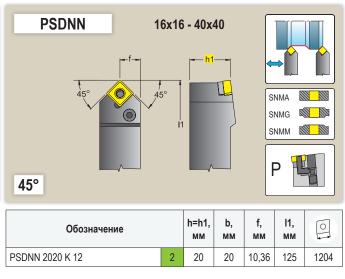
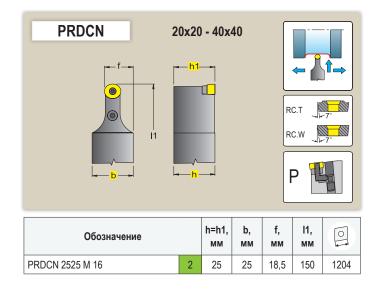
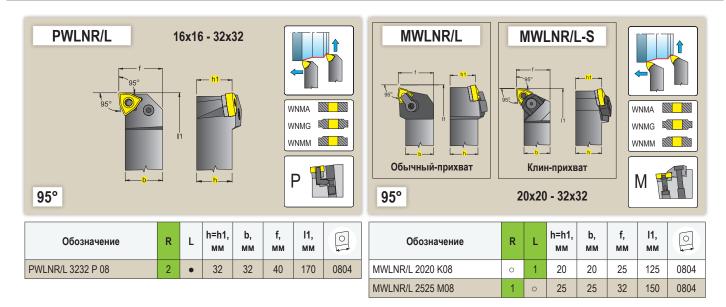


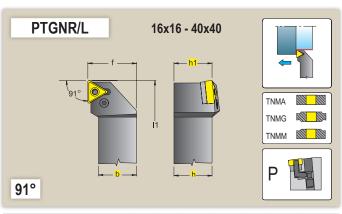
СВОБОДНЫЙ СКЛАДСКОЙ ОСТАТОК

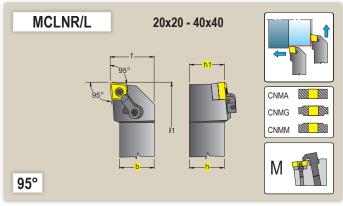
20.11.2024

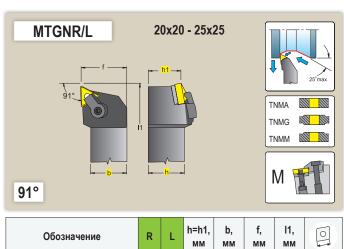


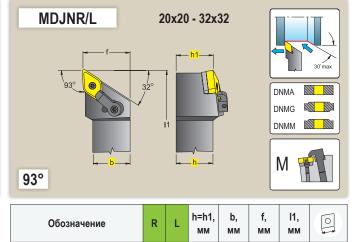


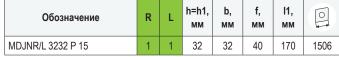

25


•

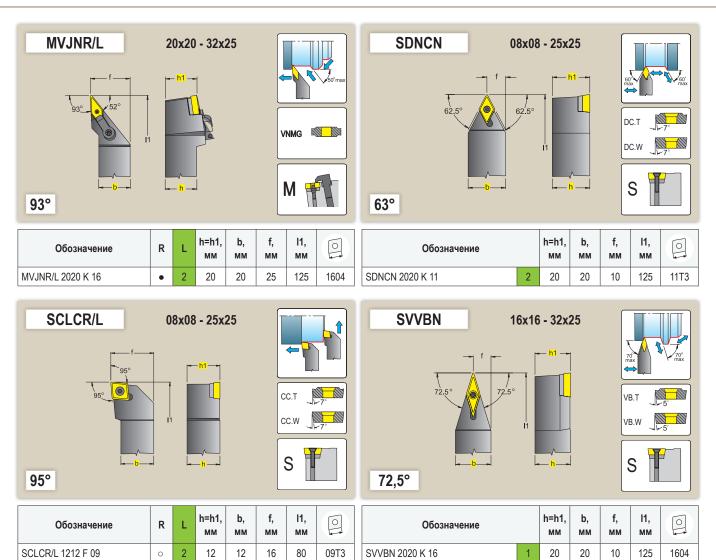




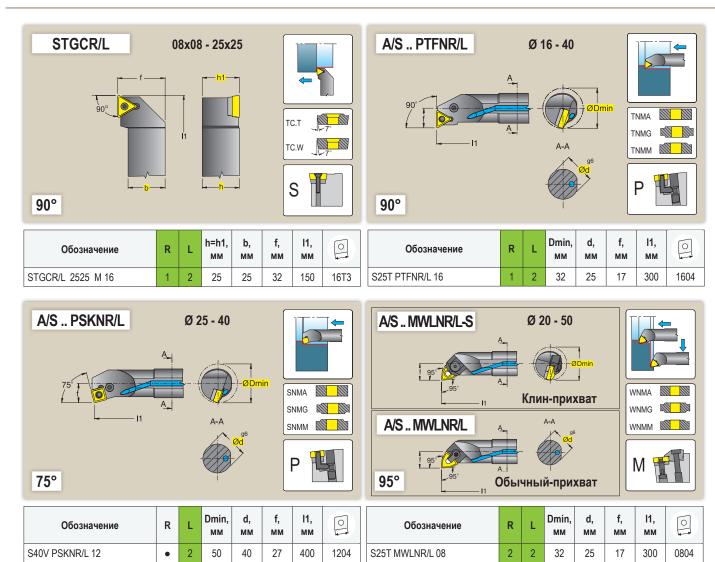


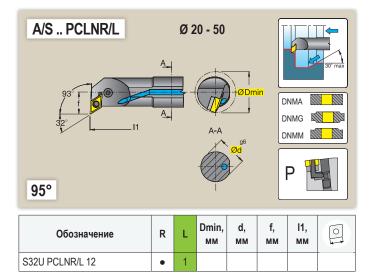

Обозначение	R	L	h=h1, мм	b, мм	f, MM	I1, мм	
PTGNR/L 2020 K 16	2	•	20	20	25	125	1604
PTGNR/L 2525 M 16	•	2					
PTGNR/L 3232 P 22	2	2	32	32	40	170	2706

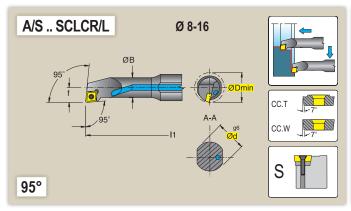
Обозначение	R	L	h=h1, мм	b, мм	f, MM	I1, мм	
CLNR/L 2525 M 12	1	3	25	25	32	150	1204
CLNR/L 3232 P19	0	1	32	32	40	170	1906
	0	3					

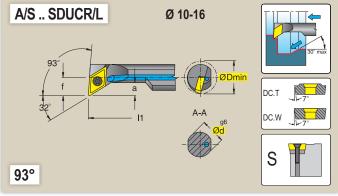


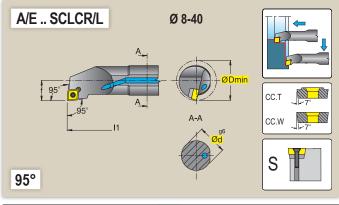
Обозначение	R	L	h=h1, мм	b, мм	f, MM	I1, мм	
MTGNR/L 2525 M 16	1	2	25	25	32	150	1604

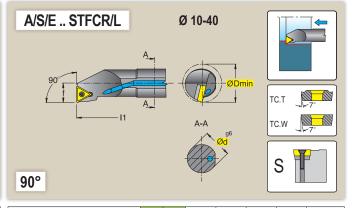












Обозначение	R	L	Dmin, мм	d, мм	f, MM	В,	I1, мм	
S12M SCLCR/L 09	•	2	16	12	9	-	150	09T3
S25T SCLCR/L 09	•	2	32	25	17	-	300	09T3

Обозначение	R	L	Dmin, мм	d, мм	f, MM	а, мм	I1, мм	
S16R SDUCR/L 07	•	1	20	16	11	-	200	0702
S20S SDUCR/L 11	•	2	25	20	13	-	250	11T3

Обозначение	R	L	Dmin, мм	d, мм	f, MM	I1, мм	
A10K SCLCR/L 06	0	2	12	10	6	125	0602

Обозначение	R	L	Dmin, мм	d, мм	f, MM	I1, мм	
S10K STFCR/L 09	2	2	12	10	7	125	0902
S12M STFCR/L 11	•	2	16	12	9	150	1102
S16R STFCR/L 11	2	0	20	16	11	200	1102
S20S STFCR/L 16	4	2	25	20	13	250	16T3

CNMM

11,

250

0

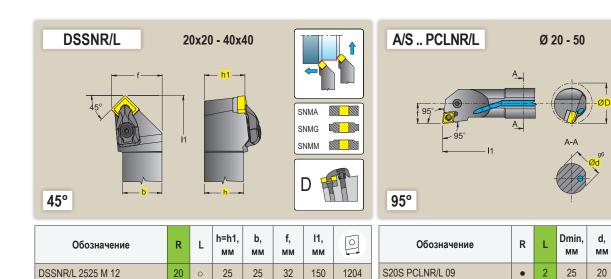
0903

f,

MM

13

Пластина опорная


Рычаг крепежный

Пластина отрезная

Обозначение		s	α	K
GTN3 Z7	20	3,1	7°	0°

ZENIT

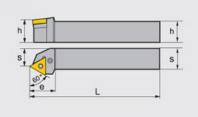
KIT SCLCR/L

Обозначение KIT SCLCR/L 3

Barra per inserti • Boring bar for inserts

CCMT - CCGT

RICAMBI - SPARE PARTS

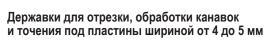

06 02 ..

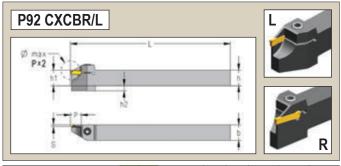
TX 25

CT 08

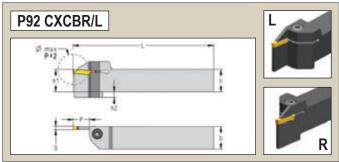
D.	L	L1	A	C	F	α
8	100	20	7	8,5	4,5	-15°
10	110	30	9	11	5	-15°
12	125	35	11	13	7	-10°
16	150	45	15	17	9	-10°
	10 12	10 110 12 125	10 110 30 12 125 35	10 110 30 9 12 125 35 11	10 110 30 9 11 12 125 35 11 13	10 110 30 9 11 5 12 125 35 11 13 7

MM

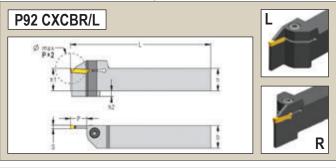

Обозначение	R	L	h=h1, мм	b, мм	f, MM	I1, мм	
PTTNR/L 2020 K16	2	2	20	20	25	125	1604
PTTNR/L 2525 M16	2	2	25	25	32	150	1604



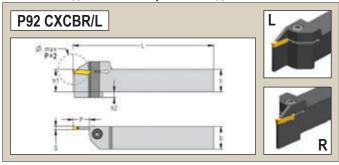
Серия Р92 - Отрезка, обработка канавок и точение



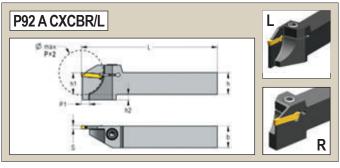
Державки для отрезки, обработки канавок и точения под пластины шириной от 1,5 до 2,5 мм



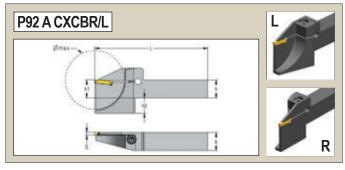
Обозначение	R	L	h, h1, b, мм	h2, мм	Ø _{max} ,	S, MM	L,	*
P92 CXCBR/L 1212 K20+25 11	0	1	12	4	22	2+2,5	125	10
P92 CXCBR/L 2020 K20+25 17	0	2	20	-	34	2+2.5	125	1


Обозначение	R	L	h, h1, b, мм	h2, мм	Р,	S, MM	L, mm	*
P92 CXCBR/L 2020 K40 17	3	0	20	5	17	4	125	1
P92 CXCBR/L 2525 M40 17	0	2	25	-	17	4	150	2
P92 CXCBR/L 2525 M50 20	0	2	25	-	20	5	150	2

Державки для отрезки, обработки канавок и точения под пластины шириной от 3 до 3,5 мм


Обозначение	R	L	h, h1, b, мм	h2, мм	Р,	S, MM	L, MM	*
P92 CXCBR/L 2020 K30 17	0	3	20	5	17	3,0	125	1
P92 CXCBR/L 2525 M30 17	0	2	25	-	17	3,0	150	2

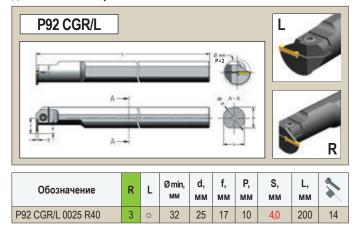
Державки для отрезки, обработки канавок и точения под пластины шириной от 6 до 10 мм


Обозначение	R	L	h, h1, b, мм	h2, мм	Р,	S, MM	L,	*
P92 CXCBR/L 3225 P80	3	0	32	-	26	8	170	3

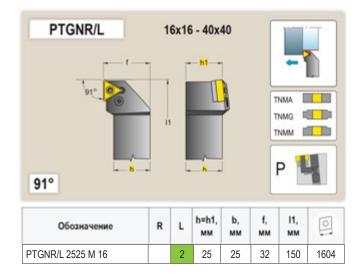
Державки для отрезки прутка с Ø42 до Ø56 мм и обработки глубоких канавок

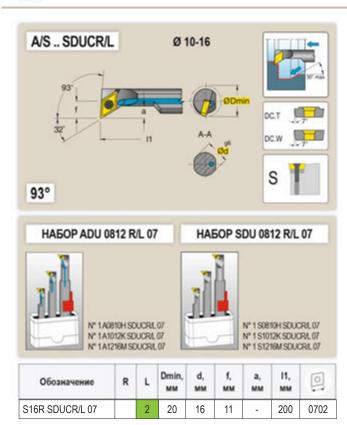
Обозн	начение	R	L	Ø max,	h, h1, b, мм	h2, мм	S, MM	L,	*
P92ACXCBF	R/L 1616 K30 42	3	0	42	16	5	3,0	125	1

Державки для отрезки прутка с Ø65 до Ø80 мм и обработки глубоких канавок

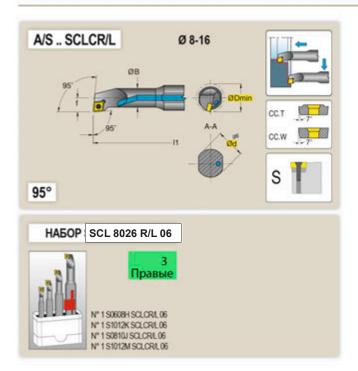


Обозначение	R	L	Ø max, мм	h, h1, b, мм	h2, мм	S, MM	L,	*
P92 A CXCBR/L 2020 K30	1	0	65	20	17	3,0	125	12
P92 A CXCBR/L 2525 P50	0	3	80	25	12	5,0	170	12

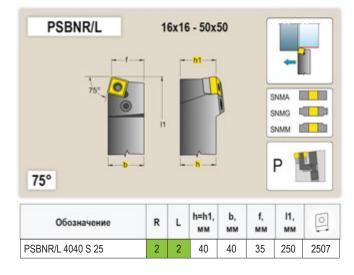

Расточная оправка с внутренним подводом СОЖ для точения и обработки канавок



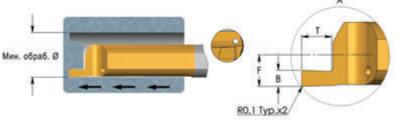
Токарные резцы

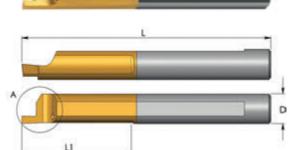


Токарные резцы



Токарные резцы


Токарные резцы



MFR

Точение торцовых канавок

Обозначение	D,	L,	L1,	В,	Т,	F,	Мин. обраб.	Сп	пав	Оправка
							Ø, мм	K20	BMK	
MFR 8 B3.8 T0.9	-	-	-	-	-	-	-	-	1	-
MFR 8 B4.0 T0.5	-	-	-	-	-	-	-	1	-	-

Cepuя TINY TOOLS

Державки для наружной обработки

Подкладная пластина

Наборы пластин тип В

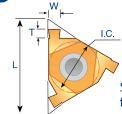
Обозначение:

KIMB-BMA - 2 IIII

Пластины

16 IR B 1.0 ISO BMA 16 IR B 1.25 ISO BMA 16 IR B 1.5 ISO BMA 16 IR B 1.75 ISO BMA 16 IR B 2.0 ISO BMA

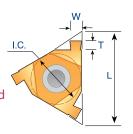
Внутреняя резьба



Винты

Обозначение	
S27 винт	5
S35 винт	2

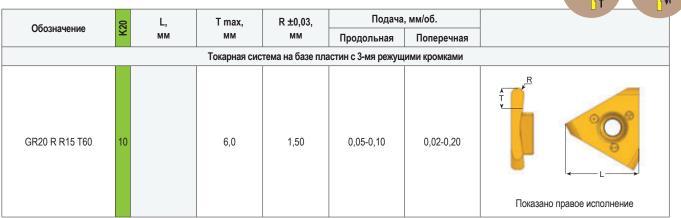
Grooving Inserts



External & Internal

ER / ILSame insert can be used for EX.RH and for IN.LH.

IR / EL
Same insert can be used for IN.RH and for EX.LH.


W ±0.02	_	I.C.	L	Or	derin	g Code
±0.02		in	mm	ER/IL Inserts	вхс	Anvil
0.50	1.41	/4	11	11 ER/IL 0.50	10	-
1.00	1.41	/4	11	11 ER/IL 1.00	10	-
1.70	2.03	/8	16	16 ER/IL 1.70	10	AE 16-0

Пластины режущие для обработки канавок правые и левые *

Радиусные пластины для профильного точения для обработки канавок (полный радиус) правые и левые *

Инструмент с односторонними пластинами. Пластины.

Пластины для отрезки и обработки канавок

Геометрия "S" серии

- Острая геометрия оптимальна для отрежи вязких материалов.
- Геометрия S Supernova. Острая геометрия с усиленными уголками рекомендуется для обработки низколегированных и нержавеющих сталей в том числе в условиях недостаточной жесткости технологической системы.

SNT N/R/L. Система Standard Design.

Обозначен	Обозначение NTR 3 6D 20	0	R, MM	S, MM	α	
SNTR 3 6D	20	R	0,2	3,1±0,1	6°	

Пластины изготавливаются из сплавов PM NANOSPEED, GF110 CARBOSPEED.

Показано левое исполнение

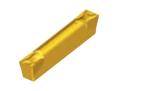
Пластины режущие отрезные правые и левые * W, T max, Подача, Обозначение мм мм мм/об. MM Токарная система на базе пластин с 3-мя режущими кромками Показано правое исполнение GP20 RR W20 T64 20 2,0 15 0,05-0,12 6,4

Пластины для нарезания резьбы с открытым профилем с углом 60° и 55° правые и левые *

MULTICUT 4 - Пластины с 4-мя режущими кромками для отрезки и обработки канавок

OFQ16R/L...N/R/L. Система M92-Q

			Марі	ки сплавов			п	В	S ^{±0,05} .		
	Обозначение	FM NANOSPEED	FM TILOX	KM CARBOSPEED	FM HARDLOX 2	()	Р, мм	R, MM	MM	α	Ømax
(OFQ16R 150 010 N 00	30	0	0	0	N	6,5	0,10	1,50	0°	13,0
(OFQ16R 200 020 N 00	10	0	0	0	N	6,5	0,20	2,00	0°	13,0



Р92 - Отрезка, обработка канавок и точение. Державки.

MTNS. Система Р92

Универсальные пластины для чистовой и черновой обработки. Горизонтальная режущая кромка с V-образным стружколомом. Специальный стружколом позволяет выполнять глубокие врезания. Рекомендуется для обработки углеродистых сталей низколегированных и конструкционных сталей.

					Марк	и спл	авов							_	
Обозначение	PM NANO SPEED	KM NANO SPEED		KM TILOX				KM CARBO SPEED	KM HARDLOX2	GF110 HARDLOX2	()	MM	IS, MM	R, MM	S, MM
MTNS 304	20	-	0	0	0	0	0	0	-	0	N	20,00	3,5	0,4	3,0+0,15
MTNS 408	50	-	0	0	0	0	0	0	-	-	N	20,00	3,5	0,8	4,0+0,20

Пластины для обработки канавок и отрезки

BTNN/R/L. Система P92

Отрезные пластины с усиленным стружколомом. Могут использоваться для обработки большинства материалов.

				Марки	сплавов					_	_		
Обозначение	PM NANO SPEED	KM	KM TILOX	PM TILOX		GS 530 NANO SPEED	KM HARDLOX2	()	L, MM	R, MM	S, MM	α	Рисунок
BTNN 1,5	-	-	2	,	0	0	0	N	15,50	0,2	1,50	0	

P92 S - отрезка и обработка канавок. Пластины.

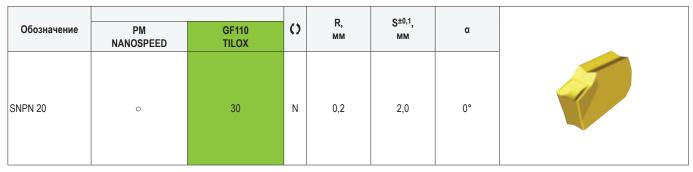
Пластины двухкромочные для отрезки и обработки канавок

BTNS. Система P92 S

Отрезная пластина специальной геометрии предоставляет возможность качественного контроля над дроблением стружки. Используется для большинства материалов.

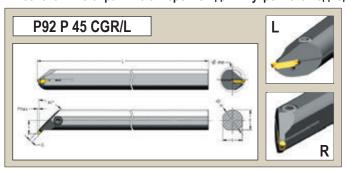
		Марки сплавов							
Обозначение	KM	PM NANOSPEED	KM TILOX	()	L, мм	R, мм	S ^(±0,1) , мм	α	
BTNS 2	0	30	0	N	14,00	0,2	2,00	0	S S

Высокоточные державки для станков


Радиусные пластины для обработки канавок и профильной обработки

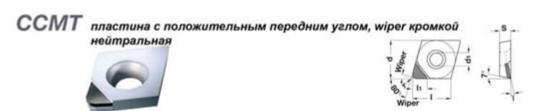
P92 P OTX R..R/L. Система P92 P

		Марки сплавов			B ^{-0,1} .	п	В	S ^{+0,05} ,
Обозначение	КМ	PM NANOSPEED	KM NANOSPEED	()	MM	Р,	R, MM	MM
OTX 4 R 100R	0	0	30	R	19,2	3,0	1,00	2,00
OTX 4 R 200R	0	20	0	R	23,6	4,0	2,00	4,00


Пластины для отрезки и обработки канавок

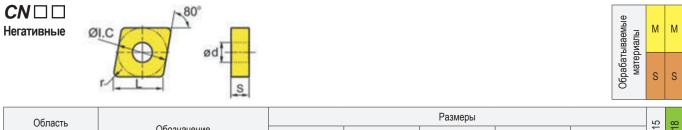
SNP N/R/L. Система Passt Perfekt

Серия Р92 Р - Высокоточный инструмент


Высокоточные оправки с отверстием для внутреннего подвода СОЖ

•									
Обозначение	R	L	Ø min, мм	d, мм	f, MM	Pmax, мм	S, MM	L, MM	*
P92 P 45 CGR/L 0025 R4	0	1	28	25	15,5	1,5	4	200	1

Левые пластины устанавливаются на правые державки.
 Правые пластины устанавливаются на левые державки.



Размер	4	б о		БОС-Г			P	азм	ерь	I, MN	4	
пластины	PDC	PDC	PDC	묘	MDC					PDC	MDC	
	\$ 10 G	D	Р		DM	d	d ₁	S	1	1,	1,	r
					-					4,5	2,6	0,1
					-	9,52	4,4	3,97	9,7	4,4	2,4	0,2
09T304-W			10		-					4,2	2,2	0,4

Токарные пластины. Ромб 80°.

	Область				Размеры			2	∞
	применения стружколома	Обозначение по ISO	L	ø I.C	S	ø d	r	JC801	JC511
Ж.	0	CNMG120404-SZ	12,9	12,7	4,76	5,16	0,4		2
Черновая	M								
٩ ا	SZS								

CNMG 80° Rhombic Negative (M class)

		CNMG					G	rad	е					D	imensio	ons (mm)
	1000	CIVIVIG			C	oate	d				Cer	met			SS	ins	m.
		UB	JC105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	_	T	CX50		Thickness	Nose Radius	Hole Dia
		Cat. No.	2	2	2	2	2	2		L	E	NAT	ပ်		F	ž	I
	_	CNMG 160612-UB			14									15.875	6.35	1.2	6.35
The sandy Street, Stre	(ww) 4dd 2 0 0.2 0.4 0.6 0.8 Feed (mm/rev)																

" ISO Turning Inserts "

SNMG

Квадрат 90°, пластины без заднего угла (класс точности М)

	SNMG				M	арк	а сп	лаі	ва					Размер	ры, мм	
	SINING	Тве	рды	й спл	тав с	пок	рыти	ием	K	(epi	METE	ı	i i	ā	T P H	d RN
a 6	F1 Обозначение пластины	JC105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	TIN	CX10	CX50	 	Толщин	Радиус г вершин	Диаметр отверстия
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SNMG 120408-F1								20		•		12.70	4.76	0.8	5.16
0 0.2 0.4 0.6 Подача, мм/об																

" ISO Turning Inserts"

■ WNMG

Ломанный трехгранник (тригон 80°), пластины без заднего угла (класс точности М)

	WNMG				Ma	арк	а сг	ιла	ва					Размер	оы, мм	
	VVINIVIG	Тве	рдыі	й спј	тав с	пок	фыт	ием	K	(ерм	иеть	ol .		g	при	тр Кит
	SF	105V	110V	JC215V	JC325V	JC450V	JC5015	JC8015	110	L	Þ	CX50	l. C.	Толщина	Радиус п вершин	Диамет; отверсти
	Обозначение пластины	9	Š	9	9	9	9	2	LN1	Ę	NAT	ပ်		1	Pa	ФР
6 - WW	WNMG 080404-SF							7					12.70	4.76	0.4	5.16
р 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2																
0 0.2 0.4 0.6 Подача, мм/об																

Токарные пластины

The same of the sa	Обозначение				- (n	окр	ыт	HOA	á				Бе	9 N	OK	ш	RMT	р	азме	NH. W	м
Тригон 80°				Ti	ep	αы	Ac	II)	B	_			Ke	PARE	ТЫ							
	Код по 180	*0	2	8	2	A	2	118	310	918	ĕ	2		9		2	P			1	2.3	66
Пластины бөз заднөго угла (ютасс точности М)		208	2	5	支	2	3	2	CE	208	1907	PX	Y.	3	Ī	Š	Ē	CMS	ä	Three	nd u	Tanto
WINING the SZ amplement of);																					
	WNMG 080408-SZ										2								127 127	4.76	0.8	5.18 5.18
0 02 04 0.8 Падана (мылоб.)																			121	4	14	0.10

■ CCMT

Ромб 80°, пластины с задним углом (класса точности М)

	CCMT				Ma	арк	а сг	іла	ва					Размер		
	CCIVIT	Тве	рдыі	й спл	ав с	пок	рыт	ием	K	Сери	иеть	ı		ā	e <u>p</u>	6 <u>Р</u>
	FT	:105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	F	NAT	CX50	. C.	Толщина	Радиус при вершине	Диаметр отверстия
	Обозначение пластины	2	2	3	٢	7	7		ک	Ę	ž	ပ			Ра	46
	CCMT 060202-FT			168									6.35	2.38	0.2	2.90
6	CCMT 09T302-FT			110									9.525	3.97	0.2	4.40
Σ . Σ 4.																
9ин8		L,														
7) бина,	CCMT 120404-FT			12									12.70	4.76	0.4	5.16
0.2 0.4 0.6	CCMT 120408-FT	10	3	4									12.70	4.76	0.8	5.16
Подача, мм/об																

CNMA

Ромб 80°, пластины без заднего угла (класса точности М)

CNMA				M	арк	а сг	ιла	ва					Размеј	оы, мм	
CIVIVIA	Тве	одыі	й спј	пав	с по	крыті	ием	K	٤ерм	иеть	ol		ā	при не	σR
_	105V	110V	215V	325V	450V	5015		110	_	 -	(50		олши	адиус п вершин	иамет версті
Обозначение пластины	9	2	2	2	2	၁၄		2	Έ	Ž	ပ်		F	P B	ДР
CNMA 120408	10											12.70	4.76	8.0	5.16

■ CNMG

Ромб 80°, пластины без заднего угла (класса точности **M**)

		CNIMO				M	арк	а сг	іла	ва					Размеј	ры, мм	
	1	CNMG	Тве	рды	й спл	ав (с пон	фыт	ием	k	(ерк	иеть	ol		ā	при не	d RN
	2-4	PG	105V	JC110V	JC215V	JC325V	JC450V	JC5015		110	L	Þ	CX50	l. C.	Толщина	Радиус п вершин	Диаметр отверстия
		Обозначение пластины	2	2	9	္ဌ	2	9		LN1	Ę	NAT	ပ်		F	Pa	4
		CNMG 090304-PG			4									9.525	3.18	0.4	3.81
		CNMG 120404-PG		7	20									12.70	4.76	0.4	5.16
7 > 6		CNMG 120408-PG			2									12.70	4.76	0.8	5.16
Ī	- /	CNMG 120412-PG			20									12.70	4.76	1.2	5.16
PHN 4																	
Глубина,		CNMG 160608-PG			70									15.875	6.35	0.8	6.35
0.3																	
	0 0.2 0.4 0.6 Подача, мм/об																

	CNIMC				Ma	арк	а сг	іла	ва					Размеј	оы, мм	
100	CNMG	Тве	рды	й спл	тав с	_	рыт	ием	K	(ері	иеть	ı		ъ	при те	б ки
	UB Обозначение пластины	JC105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	¥	NAT	CX50		Толщина	Радиус при вершине	Диаметр отверстия
	CNMG 160612-UB	<u>ر ا</u>	<u></u>	<u>っ</u> 14	<u>-</u>	<u> </u>	<u> </u>		_			O	15.875	6.35	1.2	6.35
													10.070	0.00	1.2	0.00
WW 6																
77 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2																
0 0.2 0.4 0.6 0.8																
Подача, мм/об																

	CNIMO				Ma	арк	а сг	ілаі	ва					Размер	оы, мм	
	CNMG	Тве	рдыі	й СПЈ	тав с	ПОК	рыт	ием	K	(ерм	иеть	ol		ā	при	σR
	SG Обозначение пластины	JC105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	FN	CX10	CX50	. C.	Толщина	Радиус пр вершине	Диаметр отверстия
	CNMG 120408L-SG		2				2						12.70	4.76	0.8	5.16
_ 4																
N N N N N N N N N N																
Глубина,																
0.2 0.4																
Подача, мм/об																

■ CNMG-CNMM

Ромб 80°, пластины без заднего угла (класса точности М)

	CNMG				Ma	арк	а сг	ілаі	ва					Размер	оы, мм	
500	CIVING	Тве	рды	й спј	тав с	ПОН	рыт	ием	K	٤ерм	иеть	ıl		ā	при не	d RN
	UD	105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	F	ΛΤ	CX50	<u>.</u>	Толщина	Радиус г вершин	Диаметр отверстия
	Обозначение пластины	2	5	2	2	or_	3		L	Ę	NAT	ပ်		-	Pa B	46
	CNMG 120408-UD				60								12.70	4.76	8.0	5.16
8																
Глубина, мм 6 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7																
190 L																
	CNMG 190612-UD			20									19.05	6.35	1.2	7.93
0 0.2 0.4 0.6 0.8 Подача, мм/об																

	CNIMO				Ma	арк	а сг	іла	ва					Размер	ЭЫ, ММ	
	CNMG	Тве	рдыі	і СПЈ	тав с	пок	рыт	ием	K	Сери	иеть	ı		<u>ā</u>	e p	6 RN
	GG	JC105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	늘	NAT	CX50		Толщина	Радиус при вершине	Диаметр отверстия
	Обозначение пластины	٦	٦	ſ	<u> </u>	٦	٦		_	Z	Z	0			Ф.	
	CNMG 120408-GG					10							12.70	4.76	8.0	5.16
													12.70	4.76	1.6	5.16
6																
Глубина, мм 4 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	CNMG 190608-GG		100										19.05	6.35	0.8	7.93
0 0.2 0.4 0.6 0.8 Подача, мм/об																

	CNINANA				M	арк	а сг	ла	ва					Разме	ры, мм	
	CNMM	Тве	рды	й сп.	пав (с пон	фыт	ием	K	(ерм	иеть	ol		<u> </u>	Би	٥ <u>۲</u>
	UC	JC105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	L	Þ	CX50		Толщина	Радиус при вершине	Диаметр отверстия
	Обозначение пластины	2	ဗ	2	2	2	ဗ		Z	Ę	MAT	ပ်		F	Pa	4.5
	CNMM 120408-UC				20								12.70	4.76	0.8	5.16
	CNMM 120412-UC			20									12.70	4.76	1.2	5.16
	CNMM 160612-UC				40								15.875	6.35	1.2	6.35
₩ 6	CNMM 190612-UC				20								19.05	6.35	1.2	7.93
e 4																
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2																
0 0.2 0.4 0.6 0.8 1.0 Подача, мм/об																

DCMT

Ромб 55°, пластины с задним углом (класс точности М)

	DCMT				M	арк	а сг	ιлаι	ва					Размеј	оы, мм	
	DCMT	Тве	рды	й спі	пав (СПОК	рыт	ием	K	Сери	иеть	ol		ā	ри	q. RN
	FT Обозначение пластины	JC105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	LIN	NAT	CX50	. C.	Толщина	Радиус при вершине	Диаметр отверстия
6																
∑ 4 .																
7 Слубина,	DCMT 11T302-FT								70				9.525	3.97	0.2	4.40
1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DCMT 11R304-FT		2	105									9.525	3.97	0.4	4.40
0 0.2 0.4 0.6																
0.2 0.4 0.6 Подача, мм/об																

DNMG

Ромб 55°, пластины без заднего угла (класс точности М)

	DNMC				M	арк	а сі	тла	ва					Разме	ры, мм	
	DNMG	Тве	рды	й сп.	пав	с пон	крыт	ием	ŀ	(ерм	леть	ıl		ā	при не	р ИЯ
	PF	105V	JC110V	JC215V	C325V	JC450V	JC5015		110	F	NAT	(50	<u>.</u>	Голщина	адиус г вершин	иамет гверсті
¥ 4	Обозначение пластины)C	2	20	2	2	2		Ż	Ę	Ž	ပ		-	Ра	Д
	DNMG 110404-PF		10	•								•	9.525	4.76	0.4	3.81
ени 2																
0 0.2 0.4 Подача, мм/об																

	DNMG				M	арк	а сі	тла	ва					Размеј	оы, мм	
0	DINING	Тве	рды	й спј	тав (ПОН	фыт	ием	K	Сери	иеть	ol		<u> </u>	при не	тр Кит
	SF	105V	JC110V	JC215V	C325V	C450V	C5015		110	_	٦ ا	(50	l. C.	Голщина	адиус п вершин	Диаметр отверстия
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Обозначение пластины)	7	7	7	7	7		LN1	Ę	NAT	ပ်		Ε	Ра	<u>д</u> Б
лубина,	DNMG 150408-SF						3						12.70	4.76	0.8	5.16
0 0.2 0.4 Подача, мм/об																

■ DNMG-DNMM

Ромб 55°, пластины без заднего угла (класс точности М)

	DNIMC				M	арк	а сг	ιла	ва					Размер	ры, мм	
	DNMG	Тве	рды	й спј	тав (ПОК	рыт	ием	K	٤ерм	иеть	ıl		ā	при не	q. RN
	UD Обозначение пластины	JC105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	F	NAT	CX50	 	Толщина	Радиус пр вершине	Диаметр отверстия
8																
₩ 6	DNMG 150608-UD				8	•							12.70	6.35	8.0	5.16
7 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4																
9 2 ·																
0 0.2 0.4 0.6 0.8																
0.2 0.4 0.6 0.8 Подача, мм/об																

		DNMG				Ma	арк	а сг	ιла	ва					Размер	ы, мм	
		DINING	Тве	рдыі	й СПЈ	тав с	пок	рыт	ием	K	Серм	иеть	ıl		ā	при	Ġ ĸ
		GG	JC105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	¥	NAT	CX50		Голщина	Радиус пр вершине	Диаметр отверстия
		Обозначение пластины	٦	٦	ſ	٦	ſ	٦			Z	Z	O			₾	-0
_ 6																	
¥ M ∴ 4	-	DNMG 150608-GG				10								12.70	6.35	8.0	5.16
Глубина,																	
9 2																	
_ ₀	0.2 0.4 0.6 0.8																
	0.2 0.4 0.6 0.8 Подача, мм/об																

■ SCMT

Квадрат 90°, пластины с задним углом (класс точности М)

1-6	SCMT				Ma	арк	а сг	тла	ва					Размеј		
	SCIVIT	Тве	рдыі	й СПЈ	тав с	пок	рыт	ием	K	εрι	1et E	ol		ā	іри te	б КИ
	FT	C105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	LIN	NAT	X50		Толщина	Радиус при вершине	Диаметр отверстия
	Обозначение пластины	7	<u></u>	5	7	J	7		7	Z	Z	ပ			P.	
6⊦	SCMT 09T304-FT			2									9.525	3.97	0.4	4.40
W -	SCMT 09T308-FT		10										9.525	3.97	8.0	4.40
H H	SCMT 120404-FT		20										12.70	4.76	0.4	5.16
\frac{9}{5} 2																
0 0.2 0.4 0.6 Подача, мм/об																

■ SNMA

Квадрат 90°, пластины без заднего угла (класс точности М)

CNIMA				M	арк	а сг	іла	ва					Размер	оы, мм	
SNMA	Тве	рдыі	й спі	пав	СПОК	рыт	ием	ŀ	(ері	иеть	ol		i ā	при не	d. RN
— Обозначение пластины	JC105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	FIN	NAT	CX50	. C.	Толщина	Радиус г вершин	Диаметр отверстия
1															
SNMA 120408		10										12.70	4.76	8.0	5.16

SNMG

Квадрат 90°, пластины без заднего угла (класс точности М)

	8250	CNIMO				Ma	арк	а сг	ілаі	ва					Размеј		
		SNMG	Тве	рды	й спл	тав с	ПОК	рыт	ием	K	Сери	леть	ol		ā	ри те	6 <u>R</u>
		PG	105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	—	ᅡ	CX50		Голщина	Радиус при вершине	Диаметр отверстия
		Обозначение пластины	7	7	7	7	7	٦		٢	Ę	NAT	ပ်			Ра	76
7																	
₹ 6)																
Глубина,	+	SNMG 120412-PG			20									12.70	4.76	1.2	5.16
96	2 -																
U.	^																
	0 0.2 0.4 0.6 Подача, мм/об																

SNMG

Квадрат 90°, пластины без заднего угла (класс точности М)

	SNMG							тла						Размер	оы, мм	
	SINING	Тве	рды	й спј	тав (пон	рыт	ием	K	(ерк	иеть	ol		ā	три te	6 R R
	UB Обозначение пластины	JC105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	Ę	NAT	CX50		Толщина	Радиус при вершине	Диаметр отверстия
6	SNMG 120412-UB		9										12.70	4.76	1.2	5.16
Σ ·																
2 .																
9 2																
0 0.2 0.4 0.6 0.8																
Подача, мм/об																

	CNIMO				Ma	арк	а сг	ілаі	ва					Размеј	оы, мм	
	SNMG	Тве	рды	й спл		пок	рыт	ием	К	Серм	иеть	ı		та	три te	6 <u>κ</u>
	UD Обозначение пластины	JC105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	LIN	NAT	CX50		Толщина	Радиус при вершине	Диаметр отверстия
8 -																
WW 6																
EH 4 [
7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SNMG 190612-UD			20									19.05	6.35	8.0	7.93
0 0.2 0.4 0.6 0.8																
Подача, мм/об																

■ SNMG-SNMM

Квадрат 90°, пластины без заднего угла (класс точности М)

	CNIMO				M	арк	а сг	тла	ва					Размер	ры, мм	
	SNMG	Тве	рды	й спј	пав (с поі	фыт	ием	K	(ерк	иеть	ol		ā	три te	6 <u>R</u>
	GG	105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	L	Þ	CX50	l. C.	Толщина	Радиус при вершине	Диаметр отверстия
	Обозначение пластины	၁	9	2	9	9	2			Ę	NAT	ပ်		F	Ра	75
	SNMG 120412-GG				2								12.70	4.76	1.2	5.16
_ 6																
₩ -: 4																
NE THE																
Глубина, мм 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SNMG 190612-GG		20										19.05	6.35	1.2	7.93
0 0.2 0.4 0.6 0.8																
Подача, мм/об																

■ SPMR

Квадрат 90°, пластины с задним углом (класс точности М)

-	CDMD				M	арк	a cı	пла	ва					Размер	ры, мм	
0	SPMR	Тве	рды	й сп.	лав (с пон	фыт	ием	ř	(epi	иеть	ol		ā	іри Іе	d RN
	FT Обозначение пластины	JC105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	LIN	NAT	CX50	<u>.</u>	Толщина	Радиус при вершине	Диамет отверст
Σ - Σ -	SPMR 090308-FT			2									9.525	3.18	0.8	
Глубина,																
0 0.2 0.4 Подача, мм/об																

■ TCMT

Треугольник 60°, пластины с задним углом (класс точности М)

A	TOME				Ма	арк	а сп	ιла	ва					Размер		
	TCMT	Тве	рды	й СПЈ	тав с	пок	рыті	ием	K	Серм	иеть	ı		ā	три te	q. Ви
	FT	105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	F	٦ ټا	CX50		Толщина	Радиус при вершине	Диаметр отверстия
	Обозначение пластины	2	9	9	or	9	or			F	NAT	ပ်		L	Рав	75
	TCMT 110202-FT		58										6.35	2.38	0.2	2.90
_ 6+	TCMT 110204-FT		20										6.35	2.38	0.4	2.90
MA .																
BH 4																
77 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	TCMT 16T308-FT		3										9.525	3.97	8.0	4.40
0.2 0.4 0.6																
0.2 0.4 0.6 Подача, мм/об																

■ TNMA

Треугольник 60°, пластины без заднего угла (класс точности М)

TAIRAA				M	арк	a cı	ιла	ва					Разме	ры, мм	
TNMA	Тве	рды	й сп.	пав	СПОК	фыт	ием	K	(ерм	иеть	ol		ā	іри Іе	G R
— Обозначение пластины	JC105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	LIN	NAT	CX50	l. C.	Толщина	Радиус при вершине	Диаметр отверстия
TNMA 160408		20										9.525	3.18	8.0	3.81

■ TNMG

Треугольник 60°, пластины без заднего угла (класс точности М)

Ī	<u> </u>	TNMG				M	арк	а сі	ιла	ва					Размеј	оы, мм	
		I INIVIG	Тве	рды	й спл	пав	с пок	рыт	ием	K	(ерк	иеть	ı		<u>a</u>	при не	٥ <u>۴</u>
		UA	105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	—	٦.	CX50		Голщина	адиус п вершин	иамет версти
		Обозначение пластины	ဍ	2	2	2	2	2		<u></u>	Ē	NAT	ပ်		F	Ра	ды
	WW 6	TNMG 160408-UA		20	20									9.525	4.76	0.8	3.81
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2																
	⁰ 0.2 0.4 0.6 Подача, мм/об																

	Λ	TNIMC				M	арк	а сі	ιла	ва					Размер	ры, мм	
	F	TNMG	Тве	рды	й спл	пав (пон	фыт	ием	K	Сери	иеть	ol		ā	ББ	6 R
	EBBB	UR Обозначение пластины	JC105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	LIN	NAT	CX50	. C.	Толщина	Радиус при вершине	Диаметр отверстия
		TNMG 220408-UR		50	•	•	•							12.70	4.76	0.8	5.16
6 E																	
2 (ги)																	
0	0.2 0.4 0.6 Подача, мм/об																

■ TNMG

Треугольник 60°, пластины без заднего угла (класс точности М)

A	TNIMC				M	арк	а сі	пла	ва					Разме	ры, мм	
	TNMG	Тве	рды	й сп.	лав	с пон	крыт	ием	ŀ	{ері	иеть	ol		ā	при	q 2
	UB	105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	—	NAT	CX50		Голщина	Радиус пр вершине	Диаметр отверстия
	Обозначение пластины	9	9	2	9	2	9		2	Ę	ž	ပ်		—	Pa	□ E
	TNMG 160408-UB		13										9.525	4.76	8.0	3.81
₩ ⁶ .																
е 4 2	TNMG 220408-UB			10									12.70	4.76	8.0	5.16
1 1 2 · ()																
0 0.2 0.4 0.6 0.8 Подача, мм/об																

	_	TAIMC				Ma	арк	а сп.	лаі	за					Размер		
		TNMG	Тве	рдыі	й СПЈ	ав с	ПОК	рыти	ем	K	εрι	леть	d		ā	ри	٥ <u>۴</u>
		UD	C105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	Ħ	NAT	CX50	. C.	Толщина	Радиус при вершине	Диаметр отверстия
	_	Обозначение пластинь	၂	7	<u>7</u>	<u>7</u>	7	<u>۲</u>			Z	Z	O		'	<u> </u>	~ 0
	_ 8																
	2 с тубина 2 с тубина 2 с тубина 2 с тубина 2 с тубина 2 с тубина 2 с тубина 3 с тубина 3 с тубина 3 с тубина 4 с тубина 4 с тубина 4 с тубина 4 с тубина 5 с тубина	TNMG 220408-UD		20	20									12.70	4.76	0.8	5.16
١.	ен	TNMG 220412-UD			22	10								12.70	4.76	1.2	5.16
1	<u> </u>																
[_															
	0.2 0.4 0.6 0. Подача, мм/об	8															

■ TNMG

Треугольник 60°, пластины без заднего угла (класс точности М)

	TNMG				M	арк	а сг	ιла	ва					Разме	ры, мм	
	I INIVIG	Тве	рды	й сп.	лав (с пон	фыт	ием	ŀ	(ері	иеть	ol		ā	лри Ie	G R
	UB	105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	F	누	CX50	. C.	Голщина	Радиус при вершине	Диаметр отверстия
	Обозначение пластины	3	2	2	2	9	9		ک	Ę	NAT	ပ်		T	Ра	46
	TNMG 160408-UB		13										9.525	4.76	0.8	3.81
₩ ⁶ .																
6 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TNMG 220408-UB			10									12.70	4.76	8.0	5.16
19 <u>6</u> 2																
0 0.2 0.4 0.6 0.8 Подача, мм/об																

	TNMG				Ма	арк	а сг	ілаі	ва					Размер	оы, мм	
	I INIVIG	Тве	рдыі	й спл	ав с	пок	рыт	ием	К	ерм	иеть	ı		ā	е Б	6 R
	UD Обозначение пластины	JC105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	¥	NAT	CX50	. C.	Толщина	Радиус при вершине	Диаметр отверстия
	Обозначение пластины	,	,	,	,	,	,		_	_	_				Щ	
8																
W 6	TNMG 220408-UD		20	20									12.70	4.76	8.0	5.16
Сиденна, ми 6	TNMG 220412-UD			22	10								12.70	4.76	1.2	5.16
<u>E</u> 2																
0 0.2 0.4 0.6 0.8 Подача, мм/об																

■ TNMG-TNMM

Треугольник 60°, пластины без заднего угла (класс точности М)

		TNMG				M	арк	а сг	іла	ва					Размеј		
		TINIVIG	Тве	рды	й спл	пав	ПОК	рыт	ием	K	Сери	иеть	ı		ā	ē ē	⁶ 전
		GG	JC105V	JC110V	JC215V	JC325V	JC450V	JC5015		LN10	Ħ	NAT	CX50	I. C.	Толщина	Радиус при вершине	Диаметр отверстия
		Обозначение пластины	٦	<u></u>	<u></u>	<u> </u>	٦	<u> </u>		_			O			_ С	0
		TNMG 160408-GG				10								9.525	3.18	0.8	3.81
'																	
_	6	TNMG 220412-GG		8		10								12.70	4.76	1.2	5.16
лна, мм	4																
Глубина,	2																
_	0 0.2 0.4 0.6 0.8																
	Подача, мм/об																

■ VNMG

Ромб 35°, пластины без заднего угла (класс точности М)

Γ		VAIMO				M	арк	a cı	пла	ва					Разме	ры, мм	
	Carro Care	VNMG	Тве	рды	й сп.	лав (с пон	рыт	ием	ŀ	(epi	иеть	ol		ā	при	d. RN
		UR	105V	JC110V	C215V	325V	C450V	C5015		N10	_	AT	(50		олщин	Радиус г вершин	Диамет отверст
	¥ 6	Обозначение пластины	2	2	70	2	JC	2		2	Ę	Ň	ပ်		-	Ра	4.5
- 1		VNMG 160404-UR		20										9.525	4.76	0.4	4.40
١	, ф 1100 мн 120																
١															•		
	⁰ 0.2 0.4 0.6 Подача, мм/об																

■ WNMG

Ломанный трехгранник (тригон 80°), пластины без заднего угла (класс точности М)

	VA/NIM/C				Ma	арк	а сі	тла	ва					Размер	оы, мм	
	WNMG	Тве	рды	й спј	пав с	пок	рыт	ием	K	Сери	иеть	ol		ā	при не	о ИЯ
	PG	105V	JC110V	JC215V	C325V	JC450V	JC5015		LN10	_	AT	CX50		Голщина	Радиус пр вершине	иамет верст
7.	Обозначение пластины	2	2	20	2	20	2			Ę	ž	ပြ		F	Pa	ДШ
¥ 6																
	WNMG 080408-PG		8										12.70	4.76	0.8	5.16
е́ниби 2	WNMG 080412-PG			40									12.70	4.76	1.2	5.16
0.5																
0 0.2 0.4 0.6 Подача, мм/об																

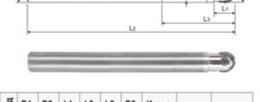
	A	WNMG				Ma	арк	а сг	іла	ва					Размер	оы, мм	
		VVIVIVIG	Тве	рдыі	й спл	ав с	пок	рыт	ием	K	Сери	иеть	ol		ā	при	dл Ви
		UB	105V	110V	JC215V	JC325V	JC450V	JC5015		LN10	L	Þ	(50	l. C.	Голщина	Радиус п вершин	Диаметр отверстия
		Обозначение пластины	2	JC1	2	၁	၁	JC		Z	Ę	NAT	Š		ĭ	Pa	Тυ
;	6																
		WNMG 080408-UB		8	2												
, i	2 (
Ľ																	
	⁰ 0.2 0.4 0.6 0.8 Подача, мм/об																

■ WNMG

Ломанный трехгранник (тригон 80°), пластины без заднего угла (класс точности М)

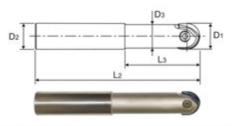
		WNMG				Ma	арка	а сг	ілаі	ва					Размер	ы, мм	
		VVINIVIG	Твеј	одыі	й СПЈ	ав с	пок	рыті	ием	K	Сери	еть	d		ā	при	٥ <u>۴</u>
		UD	105V	JC110V	JC215V	JC325V	JC450V	C5015		LN10	—	Þ	(50		Голщина	Радиус п вершин	Диаметр отверстия
		Обозначение пластины	2	2	2	2	2	2		3	Ę	Ž	Š		F	P. P. P.	4.2
8 E		WNMG 080408-UD		2	5									12.70	4.76	8.0	5.16
лубина, мм		WNMG 080412-UB			20									12.70	4.76	1.2	5.16
Ng 2																	
ات _د ا																	
	0.2 0.4 0.6 0.8 Подача, мм/об																

^	WNMG				Ma	арка	а сг	ілаі	ва					Размер		
	VVINIVIG	Тве	рды	й спј	тав с	пок	рыті	ием	K	Сери	еть	ı		Ø	ри	ρ A
	GG	105V	C110V	C215V	C325V	JC450V	C5015		110	L	Þ	CX50		Толщина	Радиус при вершине	Диаметр отверстия
	Обозначение пластинь	<u> </u>	2	၁	၁	2	2		LN	불	NAT	ပြင်		Ĕ	Pa	дъ
8 6 L	WNMG 080404-GG			20									12.70	4.76	0.4	5.16
e 4	WNMG 080408-GG				4								12.70	4.76	0.8	5.16
2 глубина	WNMG 080412-GG				8								12.70	4.76	1.2	5.16
5 0 0.2 0.4 0.6 Подача, мм/об	0.8															



Серия ZBC

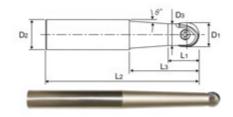
- Для радиусных сферических пластин;
- Твердосплавный корпус обладает такой же жесткостью, как и монолитные твердосплавные концевые фрезы, что позволяет производить чистовую обработку с меньшей вероятностью возникновения вибраций;
- Предназначен для чистовой обработки глубоких карманов в штампах и пресс-формах;
- Более продолжительный срок службы по сравнению со стальными корпусами;
- Возможно применение с патронами с термозажимом.


Обозначение	0.000									
ZBC0801080	2	8,0	8	12	25	130	7,7	Длинный	TWFT07	TX2508T07

Обозначение	Склад	D1, MM	D2, MM	L1, MM	L3, MM	L2, MM	D3, MM	Испол. корпуса	Ключ	Винт
		12,0	12	17	35	150	11,7	Дпинный	TWFT10	TX3512T10
ZBC1601160	3	16,0	16	20	50	200	15,7	Дпинный	TWFT15	TX4016T15

Серия ZBS

- Для радиусных сферических пластин;
- Изготовлены из высокопрочной легированной стали;
- Допуск на хвостовик h6;
- Оксидированная поверхность.


Цилиндрический хвостовик с обнижением

Обозначение	Склад	D1, мм	D2, MM	L3, MM	L2, MM	D3, MM	Испол. корпуса	Ключ	Винт
ZBS1201120		400	40	35	90	105	Коротк.	TAFTAO	TX/05/107/10
ZBS1202120		12,0	12	55	110	10,5	Норм.	TWFT10	TX3512T10
ZBS1601160	1	40.0	40	35	95		Коротк,	DIETE	TOUGHOTUS
ZBS1602160	1	16,0	16	65	125	14,5	Норм.	TWFT15	TX4016T15
ZBS2001200		20.0	20	40	110	40	Коротк.	THETTO	TANTOCOUTOO
ZBS2002200	3	20,0	20	75	145	18	Норм.	TWBT20	TX5020T20

Обозначение	Склад	D1, мм	D2, MM	L3, MM	L2, MM	D3,	Испол. корпуса	Ключ	Винт
ZBS2501250	3	25.0	25	45	125	22.5	Коротк.	TARTOE	TX6025T25
ZBS2502250	3	25,0	20	90	170	22,5	Норм.	TWBT25	1X0025125
ZBS3001320	3	30,0	32	55	140	27	Коротк.	TMDT20	TV00000T00
ZBS3002320	3	32,0	32	110	195	27	Норм.	TWBT30	TX8030T30

Серия ZBT

- Для радиусных сферических пластин;
- Изготовлены из высокопрочной легированной стали;
- Допуск на хвостовик h6;
- Оксидированная поверхность.

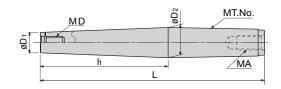
Цилиндрический хвостовик с конусным обнижением

Обозначение	Склад	D1, MM	D2, MM	L1, MM	L3, MM	L2, MM	D3, MM	Угол	Испол. корпуса	Ключ	Винт
ZBT1601200	3	16,0	20	20	65	125	14,5	2°51°	Коротк.	TWFT15	TX4016T15
ZBT2001250	4	20,0	25	25	75	145	18	3°26	Коротк.	TWBT20	TX5020T20
ZBT2501320	3	25,0	32	30	90	170	22,5	4°03	Коротк.	TWBT25	TX6025T25
ZBT3001320	3	80,0 82,0	32	40	110	195	27	1°38	Коротк.	TWBT30	TX8030T30

Твердосплавные концевые фрезы i-Xmill

Серия ZRS

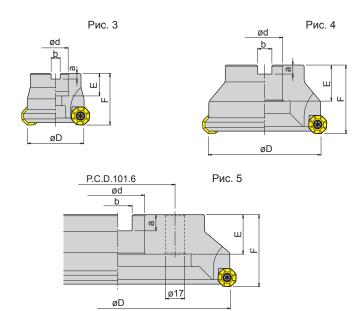
- ✓ Для радиусных сферических пластин;
 ✓ Изготовлены из высокопрочной легированной стали;
 ✓ Допуск на хвостовик h6;
 ✓ Оксидированная поверхность.


Цилиндрический хвостовик с обнижением

Обозначение	Скизд	D1, MM	D2, MM	L1, MM	L3, MM	L2, MM	D3,	Испол. корпуса	Ключ	Винт
ZRS1201120	1	12,0 13,0	12	13	30	110	11	Нормал.	TWFT10	TX3512T10
ZRS1601160	2	16,0	16	45	50	130	4E	Нормал.	TWFT15	TVANACTAE
ZRS1602160	6	17,0	10	15	65	165	15	Удлинен.	14M-112	TX4016T15

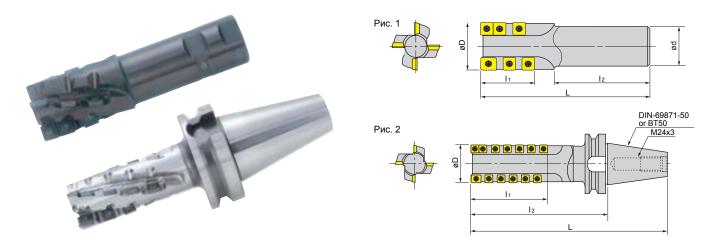
Оправка ММТ с хвостовиком конус Морзе

п для сменных фрезерных головок


	Каталожный	ие на де			Pa	змеры, м	IM			Применяемая сменная
	номер	Наличи	øD₁	ø D 2	l ₁	L	MD	MT. No.	MA	головка
	MMT-M8-110-MT3	1	15	24.076	110	196	М8	MT3	M12	MDH-3160-M8, MDH-4160-M8
										MDH-2120-M8, MDH-2160-M8

" Octoblader "

■ Торцовые фрезы ОСТ



■ Корпуса фрез

Каталожный	ичие кладе	Число					Рис.		
номер	Нал ск	пластин	øD	F	ød	а	b	E	Nº
OCT-05080-27R	1	5	80	55	27	7	12.4	22	3
OCT-10160-40R	1	10	160	55	40	9	16.4	35	4

■ Фрезы DSM

■ Корпуса фрез

Каталожный	иие аде	I_		пластин ррпус		Pa	змеры, м	КОМПЛЕКТУЮЩИЕ Винт Ключ				
номер	- ~ ·	Рис. №	Угловые	Периферийные	øD	l _a	la		ød or Taper			
			IM-CP43N	IM-SP43GS	טש	11	l 2	_	shank			
DSM-50097-DIN	2	2	2	18	50	97	165	266.8	DIN50	CSW-510	A-20SD	

Cepuя SKS - High Feed Diemaster

Торцовые фрезы Тип SKS

Рис. 1 (с внутренним

Углы наклона	γ :
пластины:	λ :
Мах. глубина фрезерования	1.5

+8° -2°

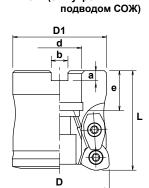
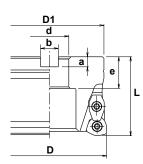



Рис. 2 (с наружним подводом СОЖ)

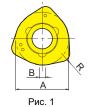
Номер по	чие			Разме	ры,	мм				_		Ко	мплект	ующие	
каталогу	Налич на склад	D	Г	d	D1	а	b	е	Рис.	Пластины	Q	Винт	Ключ	Прижим	Bec, кг
										WDMW10X620ZTR					
SKS-6125R-10-40	1	125	55	40	85	9	16.4	35	2	WDMT10X620ZER					3.1

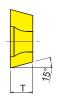
" ISO Turning Inserts"

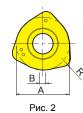
■ WNMG

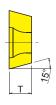
Ломанный трехгранник (тригон 80°), пластины без заднего угла (класс точности М)

	WNMG		Марка сплава								Размеры, мм					
	VVINIVIG	Твердый сплав с покрытием					Керметы			ol .		<u> </u>	e DZ	σ£		
	SF		110V	JC215V	JC325V	C450V	JC5015	JC8015	110	—	7	CX50		Толщина	Радиус при вершине	Диаметр отверстия
	Обозначение пластины	9	Š	9	9	2	9	9	F	Ę	NAT	ပ်		ř	Pa	□ ₽
6 - E	WNMG 080404-SF							7					12.70	4.76	0.4	5.16
g 4-																
7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2																
-																
0.2 0.4 0.6 Подача, мм/об																


" Diemaster "


■ Ключ


Каталожный номер	Наличие на складе
A-15SD	5
J	

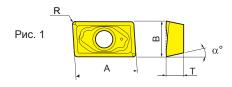

" High-Feed Diemaster"

■ Сменные пластины

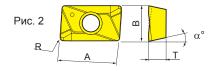
Ī	Каталожный	Класс		Размер	ры, мм		Марка	сплава	Рис.
	номер	точности	Α	Т	В	R	JC8015	JC5040	Nº
Ī	WDMW06T320ZTR	М	10	3.97	1.2	2	20		1

Фрезы BNM со стальным корпусом

■ Винт



" Super End Chipper"

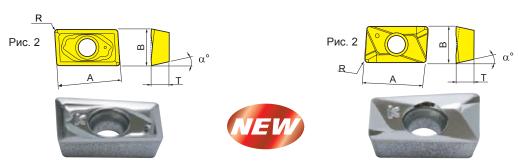

Центральная пластина

Периферийная пластина

Пластины

Каталожный	Марка	сплава	Размеры, мм							
номер	JC5015	JC5040	Α	В	Т	lpha°	R	Nº		
ZDMT08T208L		1	7.9	6	2.78	15	0.8	1		

" Super End Chipper"


■ Пластины для фрез SEC

Центральная пластина

Периферийная пластина

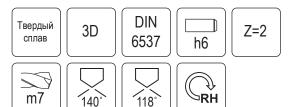
■ Пластины

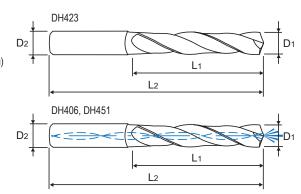
СМЕННАЯ ТВЕРДОСПЛАВНАЯ ПЛАСТИНА ALU ПОЛИРОВАННАЯ

Каталожный	Марка	сплава	Твердый сплав без покрытия			Рис.			
номер	JC5015	JC5040	FZ15	Α	В	Т	α °	R	Nº
ZPMT09T208R /P		2		9	5.4	2.78	11	0.8	2

SD30E-2900105-0 STC сверло 2,90x10,50 (хв. 3,175мм)

Обозначение	
SD30E-2900105-0	25



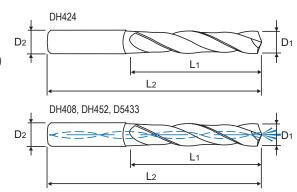


Cepuu DREAM - DH423, DH406, DH451

- Монолитные твердосплавные сверла серии Dream нормальной длины DH423 С внутренним подводом СОЖ DH406, DH451 (для нерж. сталей), D5432 (для алюминия)

D1,	Обр	абот	ка сталей		Обработка нерж. сталей		D2,	L1,	L2,
ММ	TiAIN	TiAIN	TiAIN		мм	мм	MM		
	DH423	DH406	DH451						
3,2	DH423032	2	-	-	-	-	6	20	62
3,6	-	-	-	-	DH451036	10	6	20	62
11,2	DH423112	33	DH406112	-	-	-	12	55	102
18,0	-	-	DH406180	2	-	-	18	73	123

	Углеродистые стали	Легированные стали	Улучшенные стали	Автомат.	Закалённ	ные стали	Чугуны	Медь	Бронза	Алюминий	Нерж. стали	Титан	Жаропрочн.
	менее НВ 225	HB 225 - 325	30 - 40 HRC	стали	45 - 55 HRC	55 - 70 HRC			·		·		сплавы
DH423	±	+	+				±				±		
DH406	±	+	+				±				±		
DH451	+	+	±	±						±	+	±	±
D5432										+			

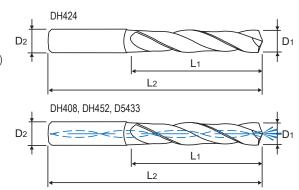


Cepuu DREAM - DH424, DH408, DH452

- Монолитные твердосплавные сверла серии Dream удлиненные DH424 С внутренним подводом СОЖ DH408, DH452 (для нерж. сталей), D5433 (для алюминия)

			Обозначение						
D1,	Обр	абот	ка сталей		Обработка нерж. сталей		D2,	L1,	L2,
ММ	TiAIN		TiAIN		TiAIN		мм	ММ	ММ
	DH424		DH408	6	DH452	8			
2,7	-	-	DH408027	2	-	-	4	21	57
3,2	DH424032	93	-	-	-	-	6	28	66
3,6	DH424036	72	-	-	-	-	6	28	66
4,1	DH424041	23	-	-	-	-	6	36	74
4,4	DH424044	70	-	-	-	-	6	36	74
4,5	DH424045	37		-		-	6	36	74
4,8	DH424048	12	-	-	-	-	6	44	82

	Углеродистые стали	Легированные стали	Улучшенные стали	Автомат.	Закалённ	ые стали	Чугуны	Медь	Бронза	Алюминий	Нерж. стали	Титан	Жаропрочн.
	менее НВ 225	HB 225 - 325	30 - 40 HRC	стали	45 - 55 HRC	55 - 70 HRC			·		'		сплавы
DH424	±	+	+				±				±		
DH408	±	+	+				±				±		
DH452	+	+	±	±						±	+	±	±
D5433										+			



Cepuu DREAM - DH424, DH408, DH452

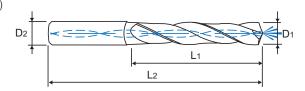
- Монолитные твердосплавные сверла серии Dream удлиненные DH424 С внутренним подводом СОЖ DH408, DH452 (для нерж. сталей), D5433 (для алюминия)

			Обозначение						
D1,	Обр	абот	ка сталей		Обработка нерж. сталей		D2,	L1,	L2,
ММ	TiAIN		TiAIN		TiAIN		MM	MM	ММ
	DH424		DH408	\	DH452)			
7,5	-	-	DH408075	5	-	-	8	53	91
9,1	DH424091	47	-	-	-	-	10	61	103

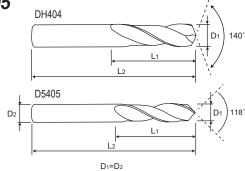
	Углеродистые стали	Легированные стали	Улучшенные стали	Автомат.	Закалённ	ные стали	Чугуны	Медь	Бронза	Алюминий	Нерж. стали	Титан	Жаропрочн.
	менее НВ 225	HB 225 - 325	30 - 40 HRC	стали	45 - 55 HRC	55 - 70 HRC					·		сплавы
DH424	±	+	+				±				±		
DH408	±	+	+				±				±		
DH452	+	+	±	±						±	+	±	±
D5433										+			

Cepuu DREAM - DH421, DH453

- Монолитные твердосплавные сверла серии Dream С внутренним подводом СОЖ DH421, DH453 (для нерж. сталей), D5434 (для алюминия)



	C	бозн	ачение				
D1,	Обработка сталей		Обработка нерж. сталей		D2,	L1,	L2,
ММ	TIAIN		TiAIN		ММ	ММ	ММ
	DH421	\	DH453	\			
3,0	-	-	-	-	6	34	72
3,3	-	-	-	-	6	34	72
3,4	DH421034	10	-	-	6	34	72
3,5	DH421035	5		-	6	34	72
3,7	-	-	-	-	6	34	72
4,2	DH421042	13	-	-	6	43	81
5,5	DH421055	13	-	-	6	57	95
6,3	DH421063	12	-	-	8	76	114
6,5	DH421065	10	-	-	8	76	114
6,8	DH421068	10	-	-	8	76	114
7,5	DH421075	8	-	-	8	76	114
8,1	DH421081	5	-	-	10	95	142
9,0	DH421090	10		-	10	95	142
9,4	-	-	DH453094	2	10	95	142
9,8	DH421098	10	-	-	10	95	142


	Углеродистые стали	Легированные стали	Улучшенные стали	Автомат. стали	Закалённ	ные стали	Чугуны	Медь	Бронза	Алюминий	Нерж. стали	Титан	Жаропрочн.
	менее НВ 225	HB 225 - 325	30 - 40 HRC	Стали	45 - 55 HRC	55 - 70 HRC							Сплавы
DH421	±	+	+				±				±		
DH453	+	+	±	±						±	+	±	
D5434										+			

Cepuu DREAM - DH404, GENERAL CARBIDE - D5405

- Универсальные монолитные твердосплавные сверла серии Dream укороченные DH404 Монолитные твердосплавные сверла общего применения D5405

Твердый сплав

3D

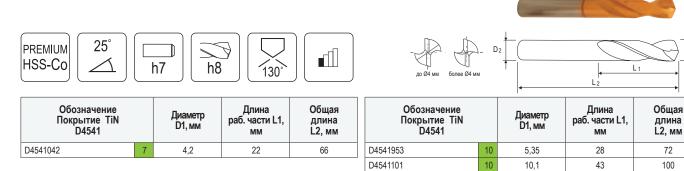
DIN 6539 h6

Z=2

	C	бозн	ачение			
D1,	Обработка стале	ей	Обработка стале	Й	L1,	L2,
MM	TiAIN		Без покрытия		ММ	ММ
	DH404		D5405			
3,0	DH404030	926	-	-	16	46
4,0	DH404040	297	-	-	22	55
4,1	DH404041	41	-	-	22	55
4,2	DH404042	1	-	-	22	55

	0	бозна	ачение			
D1,	Обработка стале	работка сталей Обработка сталей ТіАІN Без покрытия		ей	L1,	L2,
ММ	TiAIN	TiAIN Без покрытия		ММ	ММ	
	DH404		D5405			
6,0	DH404060	129	-	-	28	66

	Углеродистые стали	Легированные стали	Улучшенные стали	Автомат.	Закалённ	ые стали	Чугуны	Медь	Бронза	Алюминий	Нерж. стали	Титан	Жаропрочн.
	менее НВ 225	HB 225 - 325	30 - 40 HRC	стали	45 - 55 HRC	55 - 70 HRC					·		сплавы
DH404	±	+	+				±				±		
D5405	+	+		+			±			±	±		



72

100

Серия D4541 - высокопроизводительные укороченные сверла HPD из быстрорежущей стали PREMIUM HSS-Co общего применения

Углеродистые стали	Легированные стали	Улучшенные стали	Автомат.	Закалённ	ње стали	Чугуны	Медь	Бронза	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	стали	45 - 55 HRC	55 - 70 HRC	, ,				'		сплавы
+	+	±				±			±	±	±	±

Серия DJ543 - высокопроизводительные укороченные сверла HPD-SUS из быстрорежущей стали HSS-EX для обработки нержавеющей стали

Углеродистые стали	Легированные стали	Улучшенные стали	Автомат.	Закалённ	ные стали	Чугуны	Медь	Бронза	Алюминий	Нерж. стали	Титан	Жаропрочн.	
менее НВ 225	HB 225 - 325	30 - 40 HRC	стали	45 - 55 HRC	45 - 55 HRC 55 - 70 HRC					·		Сплавы	
+			±				±		±	+	±	±	

Серия D4542 - высокоточные короткие спиральные сверла общего применения

Обозначение Покрытие TiN D4542		Диаметр D1, мм	Длина раб. части L1, мм	Общая длина L2, мм
D4542034	4	3,4	39	71
D4542035	80	3,5	39	71
D4542942	3	4,25	43	87

Обозначение Покрытие TiN D4542		Диаметр D1, мм	Длина раб. части L1, мм	Общая длина L2, мм
D4542043	7	4,3	47	91
D4542100	9	10,0	87	137

Углеродистые стали	Легированные стали	Улучшенные стали	Автомат.	Закалённ	ые стали Чугуны		Медь	Бронза	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 45 HRC	стали	45 - 55 HRC	55 - 70 HRC	.,.,.,				·		сплавы
+	+	±				±			±	±	±	±

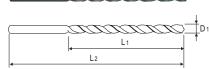
Серия DJ544 - высокопроизводительные сверла HPD-SUS нормальной длины из быстрорежущей стали HSS-EX для обработки нержавеющей стали

			до юч ини	055.220 & 1
Обозначение Покрытие TiN DJ544		Диаметр D1, мм	Длина раб. части L1, мм	Общая длина L2, мм
DJ544025	23	2,5	30	62
DJ544029	4	2,9	33	65
DJ544039	2	3,9	43	75
DJ544046	8	4,6	47	91
DJ544047	5	4,7	47	91
DJ544049	8	4,9	52	96
DJ544052	7	5,2	52	96
DJ544055	4	5,5	57	101
DJ544056	12	5,6	57	101
DJ544058	5	5,8	57	101
DJ544061	7	6,1	63	107
DJ544067	2	6,7	63	107
DJ544072	5	7,2	69	113
DJ544073	10	7,3	69	113
DJ544074	10	7,4	69	113

Обозначение Покрытие TiN DJ544		Диаметр D1, мм	Длина раб. части L1, мм	Общая длина L2, мм
DJ544075	3	7,5	69	113
DJ544079	10	7,9	75	119
DJ544081	10	8,1	75	125
DJ544082	6	8,2	75	125
DJ544083	10	8,3	75	125
DJ544084	7	8,4	75	125
DJ544085	4	8,5	75	125
DJ544091	20	9,1	81	131
DJ544092	10	9,2	81	131
DJ544095	10	9,5	81	131
DJ544096	10	9,6	87	137
DJ544097	10	9,7	87	137
DJ544098	10	9,8	87	137
DJ544099	10	9,9	87	137
DJ544107	5	10,7	94	151
DJ544141	3	14,1	109	169
DJ544145	3	14,5	109	169
DJ544180	4	18,0	118	184
DJ544200	4	20,0	125	191

Углеродистые стали	Легированные стали	Улучшенные стали	Автомат.	Закалённ	Закалённые стали		Чугуны Медь Бронза		а Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 45 HRC	стали	45 - 55 HRC	55 - 70 HRC					·		сплавы
+			±				±		±	+	±	±

Серия DL504 - удлиненные сверла из быстрорежущей стали HSS-E для обработки глубоких отверстий

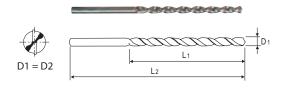


Обозначение Без покрытия DL504		Диаметр D1, мм	Длина раб. части L1, мм	Общая длина L2, мм
DL504030	15	3,0	66	100
DL504040	90	4,0	78	119

Обозначение Без покрытия DL504		Диаметр D1, мм	Длина раб. части L1, мм	Общая длина L2, мм
DL504090	1	9,0	115	175
DL504100	1	10,0	121	184

Углеродистые стали	Легированные стали	Улучшенные стали	Автомат.	Закалённые стали		Чугуны	Медь	Бронза	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 45 HRC	стали	45 - 55 HRC	55 - 70 HRC	,,		<u> </u>		·		сплавы
+	+		±			±			±			

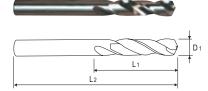
Серия DL507 - сверла из быстрорежущей стали HSS-E для обработки глубоких отверстий (тип DH50) в сталях, и алюминии



Обозначение Без покрытия DL507	Без покрытия DL507		Длина раб. части L1, мм	Общая длина L2, мм
DL507230	10	3,0	50	100

Углеродистые стали	Легированные стали	Улучшенные стали	Автомат.	Закалённые стали		Закалённые стали		Чугуны	Медь	Бронза	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 45 HRC	стали	45 - 55 HRC	55 - 70 HRC					,		CHITIGEE		
+	+		±			±			+					

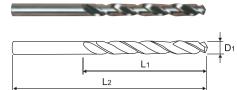
Серия D2107 - укороченные сверла с цилиндрическим хвостовиком из быстрорежущей стали HSSCo8



Без покрытия D2107	Без покрытия			длина L2, мм
D2107035	20	3,5	20	52
		•	`	

Углеродистые стали	Легированные стали	Улучшенные стали	Автомат.	Закалённ	ые стали	Чугуны	ы Медь	Бронза	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 45 HRC	стали	45 - 55 HRC	55 - 70 HRC			,	7 5 10 11 11 11 11 11 11 11 11 11 11 11 11		сплавы	
+	+		±			±			±	±	±	±

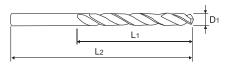
Серия D2105 - сверла нормальной длины с цилиндрическим хвостовиком из быстрорежущей стали HSSCo8



Обозначение Без покрытия D2105		Диаметр D1, мм	Длина раб. части L1, мм	Общая длина L2, мм
D2105083	5	8,3	75	117

Углеродистые стали	Легированные стали	Улучшенные стали	Автомат.	Закалённ	ње стали	Чугуны	Медь	Бронза	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 45 HRC	стали	45 - 55 HRC	55 - 70 HRC	, ,				,		сплавы
+	+		±			±			±	+	±	±

Серия DL105 - сверла нормальной длины с цилиндрическим хвостовиком из быстрорежущей стали HSS-E

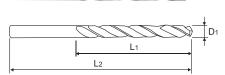


Обозначение Без покрытия DL105		Диаметр D1, мм	Длина раб. части L1, мм	Общая длина L2, мм
DL105025	481	2,5	30	57
DL105032	1000	3,2	36	65
DL105035	678	3,5	39	70
DL105038	1414	3,8	43	75
DL105042	1185	4,2	43	75
DL105047	7	4,7	47	80

Обозначение Без покрытия DL105		Диаметр D1, мм	Длина раб. части L1, мм	Общая длина L2, мм
DL105055	2	5,5	57	93
DL105075	17	7,5	69	109
DL105091	1	9,1	81	125
DL105122	5	-	-	-
DL105130	1	13,0	101	151
DL105155	1	15,5	120	178

Углеродистые стали	Легированные стали	Улучшенные стали	Автомат.	Закалённ	3акалённые стали 45 - 55 HRC 55 - 70 HRC		Медь	Бронза	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 45 HRC	стали	45 - 55 HRC				·				сплавы
+	+		±			±			±	+	±	±

Серия D1105 - сверла нормальной длины с цилиндрическим хвостовиком из быстрорежущей стали HSS

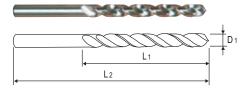


Обозначение Без покрытия D1105		Диаметр D1, мм	Длина раб. части L1, мм	Общая длина L2, мм
D1105029	20	2,9	33	61
D1105034	18	3,4	39	70

Обозначение Без покрытия D1105		Диаметр D1, мм	Длина раб. части L1, мм	Общая длина L2, мм
D1105049	8	4,9	52	86
D1105067 86		6,7	63	101

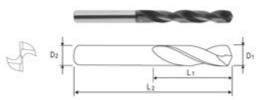
Углеродистые стали	Легированные стали	Улучшенные стали	Автомат.	Закалённ	ные стали	Чугуны	Медь	Бронза	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 45 HRC	стали	45 - 55 HRC	55 - 70 HRC							сплавы
+	+		±			±			±	±	±	±

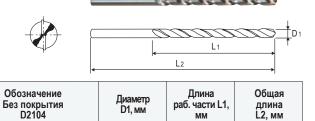
Серия D1106 – сверла нормальной длины с цилиндрическим хвостовиком из быстрорежущей стали HSS для обработки алюминия



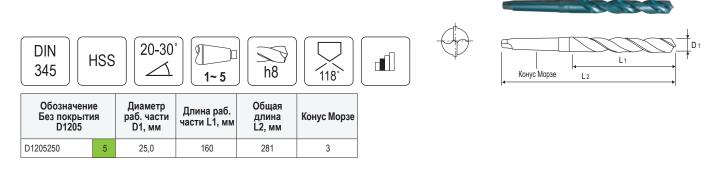
Обозначение Без покрытия D1106		Диаметр D1, мм	Длина раб. части L1, мм	Общая длина L2, мм
D1106035	10	3,5	39	70
D1106050	4	5,0	52	86

Серия MULTI-1. CDRA04 – сверла нормальной длины из порошковой быстрорежущей стали (HSS-PM) премиум класса




Углеродистые стали	Легированные стали	Улучшенные стали	Автомат.	Закалённ	Закалённые стали		Медь	Бронза	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 45 HRC	стали	45 - 55 HRC	55 - 70 HRC							сплавы
								±	+			

Серия D2104 – удлинённые сверла с цилиндрическим хвостовиком из быстрорежущей стали HSSCo8



ММ

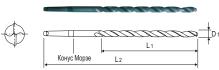
Углеродистые стали	Легированные стали	Улучшенные стали	Автомат.	3акалённые стали 45 - 55 HRC 55 - 70 HRC		Чугуны	Медь	Бронза	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 45 HRC	стали			.,.,						сплавы

Серия D1205 – сверла нормальной длины с хвостовиком конус Морзе из быстрорежущей стали HSS

Серия DL205 – сверла с хвостовиком конус Морзе для тяжелых условий обработки из быстрорежущей стали HSS-E

Углеродистые стали	Легированные стали	Улучшенные стали	Автомат.	Закалённ	ные стали	Чугуны	Медь	Бронза	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 45 HRC	стали	45 - 55 HRC	55 - 70 HRC			·		·		сплавы
+	+	±	±			±			±	±		

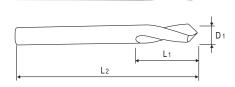
Серия D1210 – осободлинные сверла с хвостовиком конус Морзе из быстрорежущей стали HSS



Обозначени Без покрыти D1210		Диаметр раб. части D1, мм	Длина раб. части L1, мм	Общая длина L2, мм	Конус Морзе
D1210165	1	16,5	295	445	2

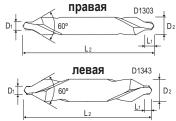
Углеродистые стали	Легированные стали	Улучшенные стали	Автомат.	Закалённ	ные стали	Чугуны	Медь	Бронза	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 45 HRC	стали	45 - 55 HRC	55 - 70 HRC							сплавы
+	+	±	±			±			±	±		

Серии D2306, D2307 – сверла для зацентровки (90°, 120° и 142°)



Свёрла с углом 120°

Свёрла с углом 90°



 Обозначение D2306
 Диаметр D1, мм
 Длина раб. части L1, мм
 Общая длина L2, мм

 D2307040
 20
 4,0
 12
 55

Углеродистые стали	Легированные стали	Улучшенные стали	Автомат.	Закалённ	ые стали	Чугуны	Медь	Бронза	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 45 HRC	стали	45 - 55 HRC	55 - 70 HRC			i i		·		сплавы
+	+		±					±	±	±		

Серии D1303 – универсальные центровочные сверла из быстрорежущей стали HSS

Тип A с углом 60°, правая

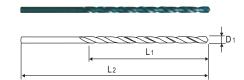
Обозначени D1303	е	Диаметр D1, мм	Диаметр хвостовика D2, мм	Длина напр. части L1, мм	
D1303912	5	1,25	3,15	1,6	31,5

Тип	A c	углом	60°,	левая
-----	-----	-------	------	-------

Обозначени D1343	,		Диаметр хвостовика D2, мм	Длина напр, части L1, мм	
D1303040	3	4,0			
D1303050	9	5,0	12,5	6,3	63

Углеродистые стали	Легированные стали	Улучшенные стали	Автомат.	Закалённ	ые стали	Чугуны	Медь	Бронза	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 45 HRC	стали	45 - 55 HRC	55 - 70 HRC			·		·		сплавы
+	+		±			±	±	±	±	±	±	±

Серия D1121 – осободлинные сверла с цилиндрическим хвостовиком из быстрорежущей стали HSS



Обозначение Без покрытия D1121		Диаметр D1, мм	Длина раб. части L1, мм	Общая длина L2, мм	
D1121972	5	7,25	155	225	
D1121045 2		4,5	125	185	

Твердосплавные сверла

Спиральные сверла

Каталожный	номер	Диаметр (d ₁)	Длина реж. части (I ₂)	Общая длина (I ₁)
220-1285	12	3.0	32	57
220-1378	16	3.5	35	64
220-1770	12	4.5	41	70
220-1968	15	5.0	44	76
220-2362	14	6.0	51	83
220-3150	14	8.0	60	92
220-3937	13	10.0	73	114
220-4040	18	10.0	73	114
220-4724	13	12.0	76	121

220

Серия

Для обработки цветных металлов, чугуна, пластиков и материалов с абразивными звойствами

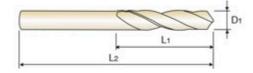
СВЁРЛА ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ С ЦИЛИНДРИЧЕСКИМ ХВОСТОВИКОМ

УКОРОЧЕННЫЕ

Покрытие: Отпуск в атмосфере пара (воронение)

Без покрытия до 2 мм

Применение: Подходят для сверления тонких материалов ручным


инструментом.

Специальные свёрла для использования

на автоматических и револьверных токарных станках.

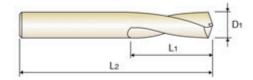
Артикул	1	Диаметр сверла	Длина раб. части	Общая длина
		D1	L1	L2
D1107085	5	8.5	37	79

				Ед. изм.: мм
Артикул	1	Диаметр сверла	Длина раб. части	Общая длина
		D1	L1	L2
D1107085	5	9.1	40	84

НАБОРЫ СВЁРЛ С ПОКРЫТИЕМ GOLD-P

НАБОРЫ СВЁРЛ ОБЫЧНОЙ ДЛИНЫ с покрытием Gold-P по DIN338

набор по.	ОПИСАНИЕ	РАЗМЕР	кол-во
D1GP165SET1	Свёрла из быстрорежущей стали с цилиндрическим хвостовиком, с крестообразной подточкой (Ø 1,0 и Ø1,5: со стандартной заточкой)	1.0-10.0 x 0.5 мм шаг	19

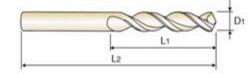

ЦЕНТРОВОЧНЫЕ СВЕРЛА ДЛЯ СТАНКОВ С ЧПУ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ HSSCo8, угол при вершине 142°

 Применение: Для высокоточной центровки отверстий на станках с ЧПУ.

Большой диаметр инструмента позволяет осуществлять центровку отверстий и последующее снятие фасок.

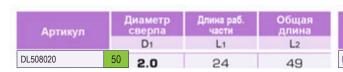
Артикул		Диаметр сверла	Длина раб. части	Общая длина
		D1	L1	L2
D2320030	10	3.0	12	46
D2320060	2	6.0	20	66
D2320080	10	8.0	25	79
D2320100	5	10.0	25	89

СВЁРЛА ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ HSS-E С ЦИЛИНДРИЧЕСКИМ ХВОСТОВИКОМ ДЛЯ ГЛУБОКИХ ОТВЕРСТИЙ


ОБЫЧНОЙ ДЛИНЫ

Применение

Предназначены для сверления глубожих отверстий в заготовках из легированной и нелегированной сталей, серого чугуна, ковкого чугуна, специальных алюминиевых или магниевых сплавов.



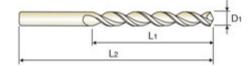
Артикул Диаметр Сверла Части Длина раб. Общая длина

D1 L1 L2

DL508085 5 8.5 75 117

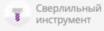
DL509 серия

СВЁРЛА ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ HSS-E С ЦИЛИНДРИЧЕСКИМ ХВОСТОВИКОМ ДЛЯ ГЛУБОКИХ ОТВЕРСТИЙ


ДЛИННЫЕ

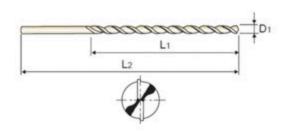
Применение:

Предназначены для сверления глубоких отверстий в заготовках из легированной и нелегированной сталей, серого чугуна, ковкого чугуна, специальных алюминиевых или магниевых сплавов.



En usu : uu

Артикул		Диаметр сверла	Длина раб. части	Общая длина
		D ₁	L1	L2
DL509027	5	2.7	66	100



Глухое / Сквозное

СВЕРЛО WORM PATTERN

DL600

характеристика

Применение: Предназначены для сверления глубоких отверстий в заготовках из легированной и нелегированной сталей, серого чугуна, ковкого чугуна, специальных алюминиевых или магниевых сплавов.

(Единица измерения : ММ)

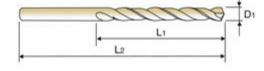
EDP No.		D1	D2	LI	L2	длина
DL600035	29	3.5		115	165	EX-long
DL600967	2	6.75		155	225	EX-long
DL600060	1	6		140	205	EX-long
DL600085	10	8.5		165	240	EX-long

DLGP195 CEPUЯ

СВЁРЛА С ЦИЛИНДРИЧЕСКИМ ХВОСТОВИКОМ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ HSS-E, С ПОКРЫТИЕМ GOLD-P

ОБЫЧНОЙ ДЛИНЫ

Геометрия канавок: правая винтовая канавка


▶ Угол при вершине: 135°, менее 1,6 мм: стандартная заточка более 1,6 мм: крестообразная подточка

▶ Покрытие: Рабочая часть имеет покрытие TiN

Применение: Сверление заготовок из нержавеющей стали и труднообрабатываемых

материалов, например, из титановых и жаропрочных сплавов

Ед. изм.: мм

Артикул		циаметр сверла	Длина раб. части	Общая длина
-	D ₁		L1	L2
DLGP195041	9	4.1	43	75

DLGP195 SERIES

HSS-E, STRAIGHT SHANK DRILLS, GOLD-P COATED

JOBBER

COURTE

D₁

CORTA

KURZ

HSS-E SPIRALBOHRER, GOLD-P BESCHICHTET

() Forets GOLD-P HSS-E queue cylindrique revêtus, série courte

() PUNTE IN HSS-E, GAMBO CILINDRICO, GOLD-P

▶Flute Geometry : Right hand helix

▶Point Angle : 135°, under 1.6mm : Normal point

1.6mm & over : Split point

▶Surface treatment : Bright body, TiN coating on working area

: Drilling stainless steels, difficult to cut materials ▶Application

such as titanium alloys and inconel.

Nutenform : Rechtsspirale

▶Spitzenwinkel: 135°, unter 1.6mm: Normalanschliff

1.6mm & über : Kreuzanschliff

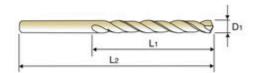
▶Oberfläche Blank mit TiN-Beschichtung im Arbeitsbereich : Tiefe Bohrungen in unlegierten und legierten ▶Anwendung

Stählen, Grauguss, Temperguss, Aluminiumund Magnesiumlegierungen

under 1.6mm 1.6mm & over

EDP No.		Drill Diameter	Flute Length	Overall Length
10000000		D1	L1	L2
DLGP195081	10	8.1	75	117

EDP No.		Drill Diameter	Flute Length	Overall Length
	_	D1	Li	L2
DLGP195100	10	10.0	87	133
DLGP195101	10	10.1	87	133


СВЁРЛА С КАНАВКАМИ ТИПА DH100 ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ HSS-E С ЦИЛИНДРИЧЕСКИМ ХВОСТОВИКОМ ДЛЯ СВЕРЛЕНИЯ ГЛУБОКИХ ОТВЕРСТИЙ, С ПОКРЫТИЕМ GOLD-P

ОБЫЧНОЙ длины

- ▶ Геометрия канавок: правая винтовая канавка, угол наклона 38°, канавки «шнекового» типа DH100
- ▶ Угол при вершине: 130°, крестообразная заточка для эффективного отвода стружки
- Покрытие: Рабочая часть имеет покрытие TiN
- Применение: Сверление глубоких отверстий в заготовках из легированной и нелегированной стали, серого чугуна, ковкого чугуна, специальных алюминиевых или магниевых сплавов



			Ед. изм.: мм
Артикул	Диаметр сверла	Длина раб. части	Общая длина
	D1	L1	L2
DLGP506049	10 4.9	52	86

DN221

Размеры в мм

Конус Мовзе

2

3 3 3

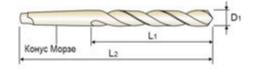
3

3

3 3

3

3


3

СВЁРЛА С ХВОСТОВИКОМ КОНУС МОРЗЕ УКОРОЧЕННЫЕ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ HSS-E C ПОКРЫТИЕМ TIN

▶ Область применения: высокоскоростная обработка широкого спектра материалов, таких как углеродистая сталь, нержавеющая сталь и алюминий.

Код	1	Диаметр сверла	Длина режущей части	Общая длина	Конус Морзе	Код		Диаметр сверла	Длина режущей части	Общая длина
TiN		D1	L1	L2	торзе	TIN	1	D1	L1	L2
DN221130	10	13.0	65,5	146,5	1	DN221230	3	23,0	99,5	197,5
DN221140	2	14,0	69,5	150,5	1	DN221240	3	24,0	102,5	223,5
DN221155	4	15,5	77	175	2	DN221250	5	25,0	102,5	223,5
DN221160	5	16,0	77	175	2	DN221265	5	26,5	105	226
DN221170	2	17,0	80,5	178,5	2	DN221270	3	27,0	108,5	229,5
DN221175	3	17,5	83,5	181,5	2	DN221280	5	28,0	108,5	229,5
DN221180	5	18,0	83,5	181,5	2	DN221290	3	29,0	111	232
DN221190	3	19,0	86,5	184,5	2	DN221295	5	29,5	111	232
DN221195	5	19,5	90	188	2	DN221300	4	30,0	111	232
DN221200	5	20,0	90	188	2	DN221310	3	31,0	114	235
DN221210	3	21,0	93	191	2	DN221320	10	32,0	114	235

D2107 серия

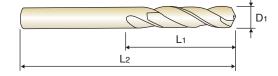
СВЁРЛА ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ (HSSCo8) С ЦИЛИНДРИЧЕСКИМ ХВОСТОВИКОМ

УКОРОЧЕННЫЕ

Покрытие:

Тонкая оксидная пленка

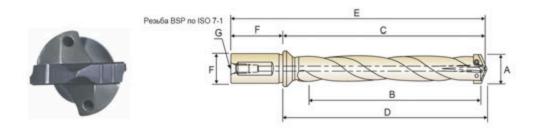
Применение:


Подходят для сверления тонких материалов ручным

инструментом.

Специальные сверла для использования

на автоматических и револьверных токарных станках.


C.251

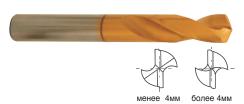
				Ед. изм.: ми
Артикул		Диаметр сверла	Длина раб. части	Общая длина
		D1	L ₁	L2
D2107110	3	11.0	47	95

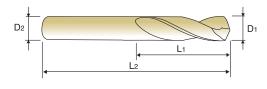
XBOCTOBUK WELDON

Осободлинное исполнение с винтовыми стружечными канавками (метрические)

Серия	Код		Диапазон сверления	Глубина сверления	Длина корпуса без пластины	Длина корпуса с пластиной	Общая длина	Хво: Диаметр	стовик Длина	Резьба
			A	В	С	D	E		F	G
Z	KSE115125182	5	11,5 - 12,5	111,1	140,5	142,9	182,4	20	41,9	1/8

D4541 серия


СВЁРЛА НРО ИЗ УЛУЧШЕННОЙ БЫСТРОРЕЖУЩЕЙ СТАЛИ ДЛЯ СВЕРЛЕНИЯ СТАЛИ

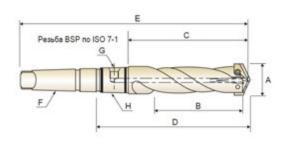

УКОРОЧЕННЫЕ

Предназначены для точного сверления на станках с ЧПУ заготовок из твёрдых и труднообрабатываемых материалов, легиро Применение: ванной инструментальной стали, жаропрочных сплавов, чугуна, алюминиевого литья и т. д.

Преимущества: Благодаря спиральной подточке вершины сверла эффективно отводится стружка, происходит самоцентрирование сверла, сни жается нагрузка при резании и улучшается точность сверления.

Данные свёрла укороченной длины с упрочнённой перемычкой обладают увеличенной жёсткостью. Конструкция свёрл способствуют снижению вибраций и отклонений при сверлении. Свёрла изготовлены из улучшенной быстрорежущей стали с содержанием кобальта и покрыты ТіN – это позволяет осуществлять обработку на высокой скорости резания и подачи, а также увеличивает срок эксплуатации инструмента. Высокое качество обработки поверхности и высокая производительность.

 $D_1=D_2$


Артикул		Диаметр сверла	Длина раб. части	Общая длина
TiN		D1	L ₁	L2
D4541931	4 3.15		18	50

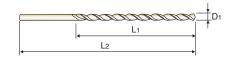
ХВОСТОВИК КОНУС МОРЗЕ

Нормальной длины с винтовыми стружечными канавками (метрические)

Серия	Код		Диапазон сверления	Глубина сверления	Длина стружечных канавок	Длина до хвостовика	Общая длина	Конус Морже	Резьба	Вращающийся адаптер для подвода СОЖ
	1017		A	В	С	D	E	F	G	Н
2	KTB250350324	2	25,0 - 35,0	136,5	165,1	211,2	324,6	4	1/8	PR120254

DT600 серия

СВЁРЛА ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ HSS-E С ЦИЛИНДРИЧЕСКИМ ХВОСТОВИКОМ ДЛЯ ГЛУБОКИХ ОТВЕРСТИЙ


ЭКСТРА ДЛИННЫЕ

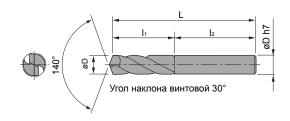
Применение:

Сверление глубоких отверстий в заготовках из легированной и нелегированной сталей, серого чугуна, ковкого чугуна, специальных алюминиевых или магниевых сплавов.

DH100 Свёрла с канавкамишнековоготипа

DT692 СЕРИЯ (**DIN1869/2**)

DIOUZ OLI	, , , ,	(1000	(2111100012)				
Артикул		Диаметр сверла	Длина раб. части	Общая длина			
		D1	L1	L2			
DT692050	3	5.0	170	245			



■ DDS-S (короткая серия 2xD)

	ие	Р	азмер	οы, м	М
Каталожный номер	Наличие на складе	øD	l ₁	l 2	L
DDS-085S	5	8.5	35	45	80

■ DDS-M (длинная серия 4xD)

	име аде	Р	азмер	оы, м	М
Каталожный номер	Налична скл	øD	l ₁	l 2	L
DDS-033M	5	3.3	21	34	55
DDS-068M	2	6.8	42	43	85

■ DDS-M (длинная серия 4xD)

	ие	Р	азмер	οы, мі	М
Каталожный номер	Наличие на складе	øD	l ₁	l 2	L
DDS-085M	3	8.5	50	45	95

Серия К1153 – ручные развёртки из быстрорежущей стали HSS с левой спиралью стружечных канавок

- Допуск на диаметр развёртки соответствует DIN 1420.
- Развёртка предназначена для обработки отверстий с допуском по Н7.
- Диаметр хвостовика равен диаметру режущей части.
- Конусная заборная часть.
- Развёртка праворежущая с левой спиралью стружечных канавок.
- Развёртки диаметром более 3,75 мм имеют центровое отверстие.

Углеродистые стали	Легированные стали	Улучшенные стали	Автомат.	Закалённ	Закалённые стали		Медь	Бронза	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	стали	45 - 55 HRC	55 - 70 HRC	, ,				·		сплавы
+	±		±			+	±	±	±	±	±	

Серия K2102 – машинные развёртки из быстрорежущей стали HSS-E с хвостовиком конус Морзе и прямыми канавками

- Допуск на диаметр развёртки соответствует DIN 1420.
- Развёртка предназначена для обработки отверстий с допуском по Н7.
- ✓ Развёртка праворежущая с прямыми стружечными канавками.
- ✓ Угол заходной части 45°.



	D1, мм		L1, мм	L2, мм	-
K210201800 1	18,0	2	56	219	8

Серия K2112 – машинные развёртки из быстрорежущей стали HSS-E с хвостовиком конус Морзе и левой спиралью стружечных канавок

- Допуск на диаметр развёртки соответствует DIN 1420.
- Развёртка предназначена для обработки отверстий с допуском по Н7.
- Развёртка праворежущая с левой спиралью стружечных канавок.
- Угол заходной части 45°.

Обозначение

K2112

K211204000

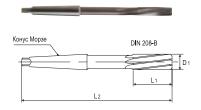
Номин.

размер

. D1, мм

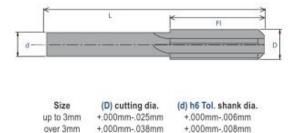
40,0

Конус


Морзе

кэа

Длина ущей части L1, мм	Общая длина L2, мм	Число зубьев
81	329	10

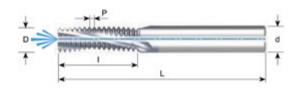

Углеродистые стали	Легированные стали	Улучшенные стали	Автомат.	Закалённ	Закалённые стали		Медь	Бронза	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	стали	45 - 55 HRC	55 - 70 HRC							сплавы
+	±		±			+	±	±	±	±	±	

RM300 STRAIGHT FLUTE

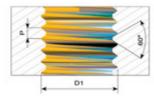
4 and 6 Flute - Right Hand Cutting

300-1445 развертка монол. тв.спл. ф3,67 Н7

Обозначение	
300-1445	1



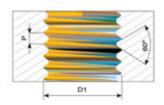
Резьба метрическая по ISO (ГОСТ 24705-81) с внутренним подводом СОЖ



Инструмент для обработки внутренней резьбы

Шаг, мм	М, крупный шаг	М, мелкий шаг	Обозначение	Сплав МТ7	d, мм	D, мм	Число зубьев	I, мм	L, mm
1,75	M12	Ø≥14	MTB1009C28 1.75 ISO	2	10	9	3	28,9	73

Унифицированная дюймовая резьба UN (UNC, UNF, UNEF)



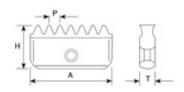
Шаг, ниток/ дюйм	UNC	UNF	Обозначение	Сплав МТ7	d, мм	D, мм	Число зубьев	I,	L,
72	-	1	MTS06014C3 72 UN	1	6	1,45	3	3,7	58
64	1	2	MTS06014C3 64 UN	1	6	1,4	3	3,8	58
56	2	3	MTS06016C4 56 UN	1	6	1,65	3	4,4	58
48	3	4	MTS06019C5 48 UN	1	6	1,9	3	5,2	58
40	4	-	MTS06021C6 40 UN	1	6	2,1	3	6,3	58
40	5	6	MTS06024C7 40 UN	1	6	2,45	3	7	58
36	-	8	MTS06033C9 36 UN	1	6	3,3	3	9	58
32	6	-	MTS06025C7 32 UN	1	6	2,55	3	7,1	58
32	8	-	MTS06032C9 32 UN	1	6	3,2	3	9,5	58
32	-	10	MTS06037C10 32 UN	1	6	3,7	3	10,5	58
28	-	12	MTS06042C11 28 UN	1	6	4,2	3	11	58
28	-	1/4	MTS0605C14 28 UN	1	6	5	3	14,5	58
24	10,12	-	MTS06035C10 24 UN	1	6	3,5	3	10,6	58
24	-	5/16,3/8	MTS08066C17 24 UN	1	8	6,6	3	17	64
20	1/4	-	MTS06047C14 20 UN	1	6	4,75	3	14	58
18	5/16	-	MTS0606C17 18 UN	1	6	6	3	17	58
16	3/8	-	MTS08067C22 16 UN	1	8	6,7	3	22	64
14	7/16	-	MTS08077C25 14 UN	1	8	7,7	3	25	64
13	1/2	-	MTS10092C27 13 UN	1	10	9,2	3	27,5	73
12	9/16	-	MTS12105C31 12 UN	1	12	10,5	3	31,5	84
11	5/8	-	MTS12114C34 11 UN	1	12	11,4	3	34,5	84

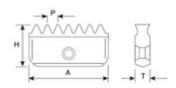
Унифицированная дюймовая резьба UN (UNC, UNF, UNEF)

Шаг,	UNC	UNF	Обозначение	Сплав	d,	D,	Число	I,	L,
ниток/ дюйм	UNC	UNF	Ооозначение	MT7	ММ	MM	зубьев	MM	ММ
32	8	-	MTS06032C12 32 UN	1	6	3,2	3	12,5	58
32	-	10	MTS06037C15 32 UN	1	6	3,7	3	15	58
28	-	1/4	MTS0605C19 28 UN	1	6	5	3	19	58
18	5/16	-	MTS0606C23 18 UN	1	6	6	3	23	58

Унифицированная дюймовая резьба UN (UNC, UNF, UNEF) с внутренним подводом СОЖ

Инструмент для обработки внутренней резьбы


Шаг,	UNC	UNF	UNEF	Обозначение	Сплав	d,	D,	Число	l,	L,
ниток/ дюйм	UNC	UNF	UNEF	Ооозначение	MT7	ММ	ММ	зубьев	ММ	ММ
32	8	10	12	MTB06032C6 32 UN	1	6	3,2	3	6,8	58
32	-	-	5/16	MTB0606C14 32 UN	1	6	6	3	14,7	58
28	-	1/4	-	MTB0605C11 28 UN	1	6	5	3	11,3	58
28	-	-	7/16-1/2	MTB0606C14 28 UN	1	6	6	3	14,1	58
20	1/4	-	-	MTB06047C12 20 UN	1	6	4,7	3	12,1	58
20	-	7/16	-	MTB0808C21 20 UN	1	8	8	3	21	64
18	5/16	-	-	MTB06056C14 18 UN	1	6	5,6	3	14,8	58
16	3/8		-	MTB08067C16 16 UN	1	8	6,7	3	16,7	64
14	7/16	-	-	MTB08077C20 14 UN	1	8	7,7	3	20,9	64
13	1/2	-	-	MTB10092C22 13 UN	1	10	9,2	3	22,5	73
11	5/8	-	-	MTB12114C28 11 UN	1	12	11,4	3	28,9	84

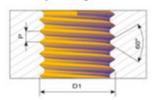

Унифицированная дюймовая резьба Резба метрическая по ISO UN (UNC, UNF, UNEF, UNS)

(**FOCT 24705-81**)

	Шаг		Сплав		Сплав
Α	ниток/ дюйм	Наружная резьба	MT7	Внутреняя резьба	MT7
30	18	30 E 18 UN	0	30 I 18 UN	5
30	14	30 E 14 UN	0	30 I 14 UN	5

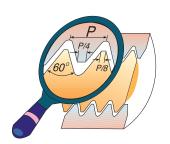
	Шаг	Hammuna	Сплав	D.u.=nau==		Сплав
Α	ММ	Наружная резьба	MT7	Внутреняя резьба	MT5	MT7
14	2			14 I 2.0 ISO	1	0

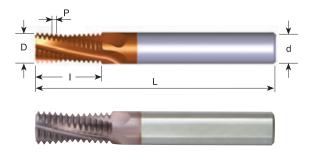
Метрическая резьба - ISO (Полный профиль). Многозубые



	Шаг					Сплав	
Тип	ММ	Обозначение	Число витков	D	Число зубьев	MT8	Корпус фрезы
S20	2,5	S178 F 2.5 ISO	2	17,8	6	1	H6,7,8,9,16

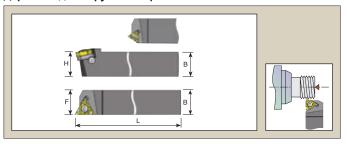
Унифицированная дюймовая резьба UN (UNC, UNF, UNEF)


Шаг, ниток/ дюйм	UNC	UNF	Обозначение	Сплав	d,	D,	Число	I,	L,
	UNC	UNF	Обозначение	MT7	мм	мм	зубьев	мм	мм
			Для	глубины резьбы 2	txD				
10	3/4	-	MTS16144D41 10 UN	1	16	14,4	4	41,5	105



ISO

Tools for Internal thread



Pitch mm	M coarse	M fine	Ordering Code	d	D	No. of Flutes	1	L	
2.0		Ø ≥ 18	MT1212D27 2.0 ISO	1 12	12.0	4	27.0	84	

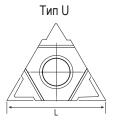


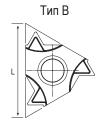
Державки для наружной обработки

Обозначение	R	L	В=Н, мм	L, мм	F, мм	10
SER/L 25 25 M22	0	5	25	150	27,5	22

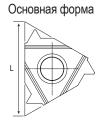
Державки для внутренней обработки

Обозначение	R	L	D, мм	D1, мм	Мин. обраб. диам., мм	L, MM	L1, мм	F, мм	10
SIR/L 0040 T22	2	0	40	40	46	300	-	25,6	22



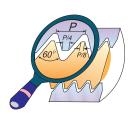


Универсальные резьбовые пластины с открытым профилем с углом 60°

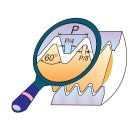


	I	P			С	плав	3				C	Спла	В		
L, мм	ММ	витков на дюйм	Наружная резьба	BLU	BMA	K20	MXC	HBA	Внутренняя резьба	BLU	BMA	K20	MXC	HBA	Рисунок
							Осно	ВН	ая форма						
16	0,5-1,5	48-16							16 IR A60	0	•	0	0	10	
16	1,75-3	14-8	16 ER G60	0	8	0	0	10	16 IR G60	0	•	0	0	0	
16	0,5-3	48-8	16 EL AG 60			10			16 IR AG 60	0		10	•	0	

Универсальные резьбовые пластины с открытым профилем с углом 55°

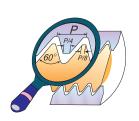


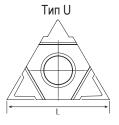
	F)				Сп	пав			
L, мм	ММ	витков на дюйм	Внутренняя резьба	BLU	ВМА	ВХС	MXC	HBA	P30	Рисунок
			Осн	овна	я ф	орма	1			
8	0,5-1,5	48-16	08 IR A55	-	-	20	-	-		
11	0,5-1,5	48-16	11 IR A55	0	0	0	0	0		
16	0,5-1,5	48-16	16 IR A55	0	•	0	0	0		
16	1,75-3	14-8	16 IR G55	0	0	0	0	0		
16	1,75-3	14-8	16 IL G55	0	20	0	0	-	10	


Резьба метрическая по ISO (ГОСТ 24705-81)

				C	Спла	В				(Спла	В		
L, мм	Р, мм	Наружная резьба	BLU	BMA	ВХС	MXC	HBA	Внутренняя резьба	BLU	BMA	ВХС	MXC	HBA	Рисунок
						Осн	овна	я форма						
11	1,5	11 ER 1.5 ISO	0	0	0	18	0							

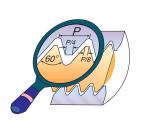
Резьба метрическая по ISO (ГОСТ 24705-81)






					Сп	лав						Спл	пав			
L, мм	Р, мм	Наружная резьба	BLU	BMA	ВХС	MXC	HBA	P25C	Внутренняя резьба	BLU	BMA	ВХС	MXC	HBA	P25C	Рисунок
								Осн	овная форма							
16	0,75	16 ER 0.75 ISO	0	•	0	0	-	18	16 IR 0.75 ISO	10	10	0	0	-		
16	0,75	16 EL 0.75 ISO	0	10	•	10	-	10								
16	1	16 EL 1.0 ISO	0	•	•	•	-	10	16 IL 1.0 ISO	0	•	0	0	-	10	
16	1,25								16 IR 1.25 ISO	0	•	0	0	0	10	
16	1,25								16 IL 1.25 ISO	0	0	0	0	-	10	
									16 IR 1,5 ISO	3	•	•	•	0	-	
16	1,5	16 EL 1.5 ISO	0	•	3	•	-	-	16 IL 1.5 ISO	0	•	0	0	-	10	
16	1,75	16 ER 1.75 ISO	0	0	0	0	8									
16	1,75	16 EL 1.75 ISO	0	•	0	10	-	10								
16	2								16 IR 2.0 ISO	0	•	•	•	0	10	
16	2	16 EL 2.0 ISO	0	0	10	0	-	10	16 IL 2.0 ISO	0	•	0	0	-	10	
16	2,5	16 EL 2.5 ISO	0	•	10	10	-	10								

Резьба метрическая по ISO (ГОСТ 24705-81)

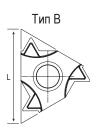


				C	пла	В		
L, мм	Р, мм	Внутренняя резьба	BLU	BMA	ВХС	MXC	HBA	Рисунок
	Tı	ип В. Пластины со спе	чені	ным	стру	жкој	томо	OM .
16	1,5	16 IR B 1.5 ISO	-	10	-	-	-	
16	2	16 IR B 2.0 ISO	-	30	,		-	

Унифицированная дюймовая резьба UN (UNC, UNF, UNEF, UNS)

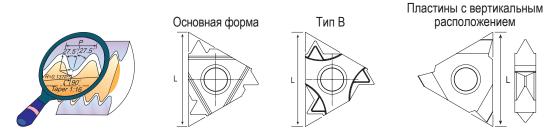
	D			C	пла	В		
L, мм	Р, витков на дюйм	Наружная резьба	BLU	ВМА	ВХС	MXC	HBA	Рисунок
		Основна	я фо	рма				
16	32	16 ER 32 UN	0	10	0	0	1	0

Трубная цилиндрическая дюймовая резьба (Whitworth-55°) G, BSW, BSF, BSP, BSB

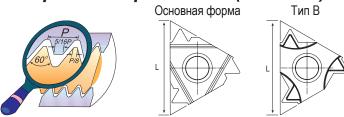


	D			(Спла	В					Сп	пав			
L, мм	Р, витков на дюйм	Наружная резьба	BLU	BMA	BXC	MXC	P25C	Внутренняя резьба	BLU	BMA	BXC	MXC	HBA	P25C	Рисунок
						0	СНОВ	ная форма							
16	19							16 IR 19 W	0	0	0	0	-	10	
16	16							16 IR 16 W	0	10	0	0	-	10	
16	14	16 ER 14 W	0	•	0	0	30	16 IR 14 W	0	7	0	0	-	10	

Резьба коническая дюймовая с углом профиля 60° NPT, NPTR (K) (ГОСТ 6111-52)



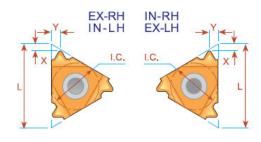
	D			(Спла	В		
L, мм	Р, витков на дюйм	Внутренняя резьба	BLU	BMA	ВХС	MXC	HBA	Рисунок
		Основна	я фо	рма				
8	18	08 IL 18 NPT	-	-	30	-	-	

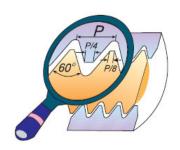


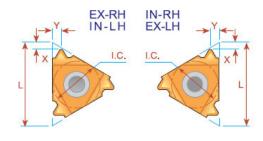
Резьба трубная коническая с углом профиля 55° BSPT (R, Rc) (ГОСТ 6211-81)

	D				Спл	пав			
L, мм	Р, витков на дюйм	Внутренняя резьба	BLU	BMA	BXC	MXC	HBA	P25C	Рисунок
		Осн	овна	я ф	орма	1			
16	11	16 IR 11 BSPT	0	20	0	0	-	20	

Метрическая резьба МЈ (ISO 5855)

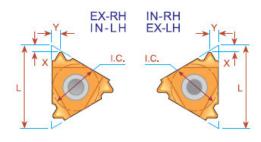



Резьба метрическая по ISO (ГОСТ 24705-81)



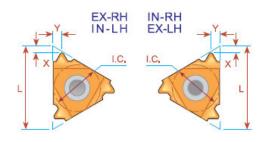
IIIaa					Сплав				Сплав
Шаг, мм	L, MM	Наружная резьба	Х	Y	ВМА	Внутренняя резьба	Х	Y	ВМА
1,5	16					16 IR Z 1.5 ISO	1,3	1,0	20
2,0	16					16 IR Z 2.0 ISO	1,3	1,3	10
3,0	16	16 ER Z 3.0 ISO	1,3	1,6	6				

Унифицированная дюймовая резьба UN (UNC, UNF, UNEF, UNS)



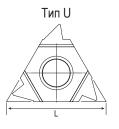
Huses					Сплав				Сплав
Число витков	L, MM	Наружная резьба	Х	Y	ВМА	Внутренняя резьба	Х	Y	ВМА
20	16	16 ER Z 20 UN	1,3	0,9	10	16 IR Z 20 UN	1,3	0,9	10
18	16					16 IR Z 18 UN	1,3	1,0	10
16	16	16 ER Z 16 UN	1.3	1.1	10	16 IR Z 16 UN	1,3	1,1	10
14	16	16 ER Z 14 UN	1,3	1,2	10	16 IR Z 14 UN	1,3	1,2	10
12	16	16 ER Z 12 UN	1,3	1,4	10	16 IR Z 12 UN	1,3	1,4	10

Универсальные резьбовые пластины с открытым профилем с углом 60°



	П			Сплав		Сплав		
MM	Диапазон, мм	Число витков на дюйм	Наружная резьба	ВМА	Внутренняя резьба	ВМА	Х	Y
16	0,5-1,5	45-16	16 ER Z A60	10	16 IR Z A60	9	1,2	0,9
16	1,75-3,0	14-8	16 ER Z G60	10	16 IR Z G60	10	1,2	1,7
16	0,5-3,0	48-8			16 IR Z AG60	10	1,2	1,7

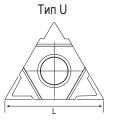
Универсальные резьбовые пластины с открытым профилем с углом 55°


	П			Сплав		Сплав		
L, MM	Диапазон, мм	Число витков на дюйм	Наружная резьба	ВМА	Внутренняя резьба	ВМА	Х	Y
16	0,5-1,5	48-16	16 ER Z A55	10	-	-	1,2	0,9
16	1,75-3,0	14-8	-	-	16 IR Z A55	8	1,2	1,7

Резьба трапецеидальная метрическая по DIN 103 (ГОСТ 24737-81)

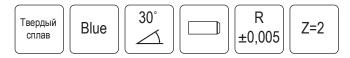
				C	пла	В				C	пла	В		
L, мм	Р, мм	Наружная резьба	BLU	BMA	ВХС	MXC	P25C	Внутренняя резьба	BLU	BMA	ВХС	MXC	P25C	Рисунок
						Осн	овна	я форма						
16	2	16 EL 2 TR		20										
16	3	16 ER 3 TR	0	•	0	0	30							

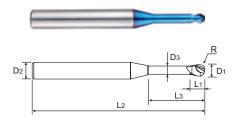
Резьба НКТ (API ROUND) (API Spec Standard 5B) (ГОСТ 631-75, ГОСТ 632-80, ГОСТ 638-80)



					C	пла	В				C	пла	В		
L, мм	Р, витков на дюйм	Конус	Наружная резьба	BLU	ВМА	ВХС	MXC	P25C	Внутренняя резьба	BLU	ВМА	ВХС	MXC	HBA	Рисунок
								API R	ound						
16	10	-	16 ER 10 API RD	0	•	0	•	10							
16	8	-													
															~

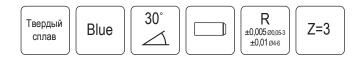
Универсальные резьбовые пластины с открытым профилем с углом 60°


		P			C	пла	В				C	пла	В		
L, мм	ММ	витков на дюйм	Наружная резьба	BLU	ВМА	BXC	MXC	HBA	Внутренняя резьба	BLU	ВМА	BXC	MXC	HBA	Рисунок
							Осн	овна	я форма						
11	0,5-1,5	48-16							11 IR A60	0	•	•	49	0	

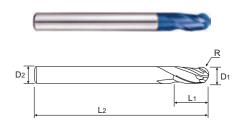


Серия G8A46

 2-х зубые радиусные сферические концевые фрезы для обработки глубоких пазов



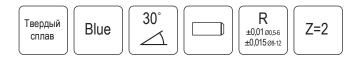
Обозначение	Кол.	R(±0,005),	D1, мм	D2, мм	L1, мм	L3,	L2, мм	D3, мм
G8A46965	4	R0,4	0,8	4	0,6	10	45	0,75
G8A46986	2	R0,15	0,3	4	0,3	3	45	0,27
G8A46987	2	R0,25	0,5	4	0,4	5	45	0,45
G8A46910	19	R1,0	2	4	1,6	20	55	1,95
G8A46911	10	R1,5	3	6	2,4	20	60	2,85

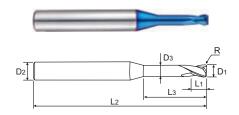


Серия G8A59

✓ 3-х зубые радиусные сферические концевые фрезы

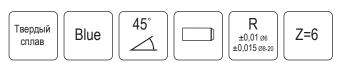
Обозначение	Кол.	R, мм	D1, мм	D2, мм	L1, мм	L2, мм
G8A59030	5	R1,5	3	6	8	60


Углеродистые стали	Легированные стали	Улучшенные стали	3	акалённые стал	и	Чугуны	Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC					·		сплавы
	±	±	±	+	+							

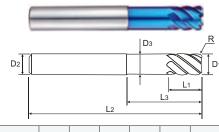


Серия G8A60

 ✓ 2-х зубые концевые фрезы с угловым радиусом для обработки глубоких пазов

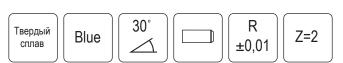


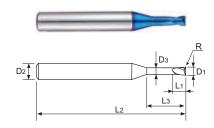
Обозначение	Кол.	R(±0,005),	D1, мм	D2, мм	L1, мм	L3, мм	L2, мм	D3, мм
G8A60903	2	R0,5	4	6	5	16	55	3,85
G8A60060	2	R0,5	6	6	7	20	60	5,85
G8A60905	2	R1,0	6	6	7	20	60	5,85
G8A60080	2	R1,0	8	8	9	25	60	7,7
G8A601000532	2	R0,5	10	10	11	32	70	9,7



Серия G8A39

 6-и зубые концевые фрезы с угловым радиусом и углом наклона винтовой стружечной канавки 45°


Обозначение	Кол.	R, мм	D1, мм	D2, мм	L1, мм	L3, мм	L2, мм	D3, мм
G8A39903	8	R0,5	10	10	22	-	100	-


Обозначение	Кол.	R, мм	D1, мм	D2, мм	L1, мм	L3, мм	L2, мм	D3, мм
G8A39905	8	R0,5	12	12	26	-	110	-

Серия G8A52

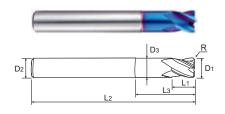
 2-х зубые концевые фрезы с угловым радиусом для обработки глубоких пазов

Обозначение	Кол.	R(±0,01), мм	D1, мм	D2, мм	L1, мм	L3, мм	L2, мм	D3, мм
G8A52903	2	R0,05	0,8	6	1,2	5,5	50	0,75
G8A52010	11	R0,1	1	6	1,5	3,3	50	0,95

Углеродистые стали	Легированные стали	Улучшенные стали	3	акалённые стал	ın	Чугуны	Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC							сплавы
	±	±	±	+	+							

Cepuu G8A47, G8A37

✓ 4-х зубые концевые фрезы с угловым радиусом


Blue

R ±0,01 Ø3-6 ±0,015 Ø8-12

3-6 8-12

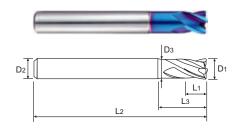
Z=4

Обозначение	Кол.	R, мм	D1, мм	D2, мм	L1, мм	L3,	L2, MM	D3, мм
G8A47917	30	R0,3	3	6	4	16	55	2,85
G8A47919	2	R0,3	4	6	5	12	55	3,85
G8A47920	12	R0,3	4	6	5	16	55	3,85
G8A37045	2	R0,1	4,5	6	6	10	45	4,35

Обозначение	Кол.	R, мм	D1, мм	D2, мм	L1, мм	L3, мм	L2, мм	D3, мм
G8A47905	36	R1	6	6	7	20	60	5,85
G8A47080	40	R1	8	8	9	25	60	7,7
G8A47100	28	R1	10	10	11	32	70	9,7
G8A47120	27	R1	12	12	12	38	80	11,7

Серия G8A02

✓ 4-х зубые концевые фрезы


Blue

Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L3, мм	L2, мм	D3, мм
G8A02010	9	1	6	1,5	3	50	0,95

Углеродистые стали	Легированные стали	Улучшенные стали	3	акалённые стал	и	Чугуны	Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC							сплавы
	±	±	±	+	+							

Cepuu G8A28, G8A38

✓ 2-х зубые радиусные сферические концевые фрезы

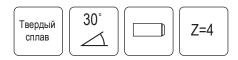
Z=2

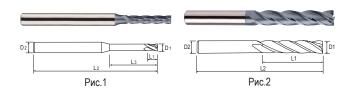
	↓ D3	R
D2		$\int_{1}^{\infty} D_1$
	L2 L3	L1

Обозначение		R(±0,005),	D1, мм	D2, мм	L1, мм	L3, мм	L2, мм	D3, мм
G8A38012	10	R0,6	1,2	4	1,2	2,6	50	1,15
G8A38020	15	R1	2	6	2	4	50	1,85
G8A38030	2	R1,5	3	6	3	6	60	2,85

Обозначение		R(±0,005), мм	D1, мм	D2, мм	L1, мм	L3, мм	L2, мм	D3, мм
G8A38080	14	R4	8	8	8	16	100	7,7
G8A38100	19	R5	10	10	10	20	100	9,7
G8A38120	15	R6	12	12	12	24	110	11,7

Углеродистые стали	Легированные стали	Улучшенные стали	3	Чугуны	Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.		
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC					·		сплавы
	±	±	±	+	+							



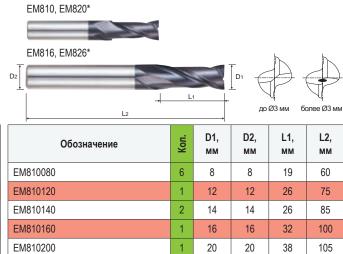


Серия SEME72

 ✓ 4-х зубые концевые фрезы для обработки закаленных сталей до 55 HRc

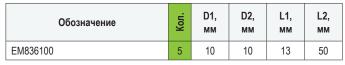
Обозначение	Кол.	D1, мм	D2, мм	L1,	L2,	Рис.
SEME7208050150E	5	8,0	8	50	150	2

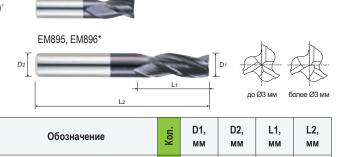
Углеродистые стали	Легированные стали	Улучшенные стали	3	Закалённые стали				Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC		Чугуны Медь					сплавы
+	+	+	+	±		±						



Cepuu EM810

✓ 2-х зубые концевые мини фрезы


Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2, MM
EM810004	9	0,4	3	0,8	40
EM810006	2	0,6	3	1,2	40
EM810901	10	1	6	2,5	40
EM810020	20	2	4	6	40
EM810060	9	6	6	13	50



Cepuu EM836, EM895

- √ 3-х зубые укороченные концевые фрезы с углом наклона стружечной канавки 30°
- ✓ 3-х зубые концевые фрезы с углом наклона стружечной канавки 38°

8

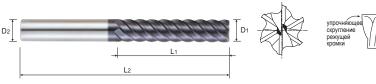
16

16

32

82

EM836, EM846*


Углеродистые стали	Легированные стали	Улучшенные стали	3	Закалённые стали				Графит	Алюминий	Нерж. стали	Титан	Жаропрочн. сплавы
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC			' '				Сплавы
±	+	+	+	±		±				±		

EM895160

Серия ЕМ834

 ✓ 6-и зубые удлинённые концевые фрезы с углом наклона винтовой стружечной канавки 45°

Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2, MM	Z, шт	Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2, MM	Z, шт
EM/GM834080	7	8	8	36	90	6	EM/GM834250	5	25	25	92	180	6

Углеродистые стали	Легированные стали	Улучшенные стали	3	Закалённые стали				Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC							сплавы
±	+	+	+	±								

Cepuu EM876, EM813, EM838

🗸 2-х зубые укороченные и удлинённые радиусные сферические концевые фрезы

AlTiN

Z=2

Обозначение	Кол.	R(±0,02), мм	D1, мм	D2, мм	L1, MM	L2, мм
EM813010	4	R0,5	1	4	2,5	50
EM876010	4	R0,5	1	3	3	38
EM813901	24	R0,5	1	6	2,5	30
EM813015	10	R0,75	1,5	4	4	50
EM838020	20	R1,0	2	3	6	80
EM813020	5	R1,0	2	6	5	50
EM813030	1	R1,5	3	6	8	60
EM813050	50	R2,5	5	6	10	80

Обозначение	Кол.	R(±0,02), мм	D1, мм	D2, мм	L1, мм	L2, MM
EM838050	10	R2,5	5	6	10	120
EM838060	16	R3,0	6	6	10	120
EM813080	11	R4,0	8	8	14	100
EM838080	30	R4,0	8	8	14	140
EM838100	3	R5,0	10	10	18	180
EM813120	51	R6,0	12	12	22	110
EM876180	18	R9,0	18	18	18	84

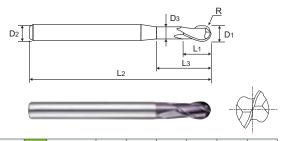
Серия ЕМ865

✓ 2-х зубые радиусные сферические концевые мини-фрезы

Обозначение	Кол.	R(±0,01), мм	D1, мм	D2, мм	L1, MM	L2, мм
EM865008	3	R0,4	0,8	3	2	40

Серия ЕМ899

✓ 2-х зубые радиусные сферические концевые фрезы с обнижением



Обозначение	Кол.	R(±0,02), MM	D1, мм	D2, мм	L1, мм	L3, мм	L2, мм	D3, мм
EM899030	21	R1,5	3	6	8	_	70	_
EM899040	15	R2,0	4	6	8	_	70	_
EM899050	24	R2,5	5	6	12	_	80	_

Обозначение	Кол.	R(±0,02), мм	D1, мм	D2, мм	L1, мм	L3, мм	L2, мм	D3, мм
EM899060	10	R3,0	6	6	12	22	80	5,8
EM899080	9	R4,0	8	8	14	27	90	7,8
EM899120	20	R6,0	12	12	22	35	110	11,8

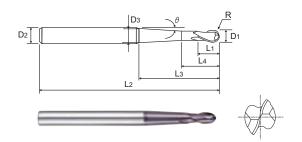
Углеродистые стали	Легированные стали	Улучшенные стали	3	Закалённые стали				Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC					·		сплавы
±	+	+	+	±	±	±						

Cepuu EM/GM811, EM821*, EM817, E827*

- ✓ 4-х зубые концевые фрезы
- ✓ 4-х зубые удлиненные концевые фрезы

Обозначение		D1, мм	D2, мм	L1, мм	L2, MM	Обозначение	D1, мм	D2, мм	L1, MM	L2, MM
EM811220	20	22	20	38	105	GM811050 50	5	6	13	50

Углеродистые стали	Легированные стали	Улучшенные стали	3	акалённые стал	И	Чугуны	Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC					·		сплавы
±	+	+	+	±		±				±		



✓ 2-х зубые радиусные сферические концевые фрезы с конусным обнижением

Обозначение	Кол.	R(±0,01),	D1, мм	D2, мм	L1, мм	L4, мм	L3,	L2, мм	D3, мм	θ,
EM902907	5	R2,5	5	8	10	12	61	110	7	1° 30'
EM902908	1	R3,0	6	8	12	15	53	110	8	1° 30'

Углеродистые стали	Легированные стали	Улучшенные стали	3	Закалённые стали				Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC	, ,	Медь			·		сплавы
±	±	+	+	±								

Серия ЕМ815

✓ 4-х зубые радиусные сферические концевые фрезы.

Обозначение	Кол.	R(±0,01), мм	D1, мм	D2, мм	L1, мм	L2, мм
EM815020	5	R1,0	2	6	5	50

Обозначение	Кол.	R(±0,01), мм	D1, мм	D2, мм	L1, мм	L2, мм
EM815050	5	R2,5	5	6	10	80

Углеродистые стали	Легированные стали	Улучшенные стали	3	Закалённые стали		Чугуны	Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC					,		сплавы
±	+	+	+ ± ±		±							

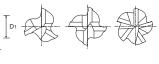
Серия ЕМ818

✓ 2-х зубые удлинённые концевые фрезы с угловым радиусом

Обозначение	Кол.	R, мм	D1, мм	D2, мм	L1, мм	L2,
EM818912	37	R0,5	5	6	20	60

Углеродистые стали	Легированные стали	Улучшенные стали	3	Закалённые стали		Чугуны	Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC								сплавы
±	+	+	+	±								

 Многозубые черновые концевые фрезы с углом наклона винтовой стружечной канавки 20° (мелкий шаг стружколомающих канавок)



Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2, мм	Z, шт
EM814060	2	6	6	16	57	3
EM814100	12	10	10	22	72	4
EM814120	12	12	12			

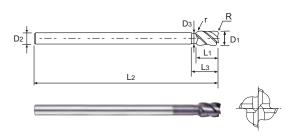
Серия ЕМ833

 ✓ 3-х и 4-х зубые черновые радиусные сферические концевые фрезы с углом наклона винтовой стружечной канавки 20° (мелкий шаг стружколомающих канавок)

Обозначение	Кол.	R(±0,01), мм	D1, мм	D2, мм	L1, мм	L2, MM	Z, шт
EM833100	4	R5,0	10	10	22	72	4

Серия ЕМ905

√ 4-х зубые концевые фрезы с обниженным хвостовиком, угловым радиусом и углом наклона винтовой стружечной канавки 45°



AITiN

Обозначение	Кол.	R, мм	D1, мм	D2, мм	L1, мм	L3,	L2, мм	D3, мм
EM905140	10	R0,5	14	12	25,2	21	160	11,5

Угл	перодистые стали	Легированные стали	Улучшенные стали	3	Закалённые стали		Чугуны	Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.
мен	нее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC							сплавы
	±	+	+	+	±	±	±				±		

✓ 4-х зубые удлинённые концевые фрезы с угловым радиусом

Обозначение	Кол.	R, мм	D1, мм	D2, мм	L1, мм	L2, MM
EM819911	22	R0,5	4	6	15	50
EM819050	27	R0,3	5	6	20	60
EM819060	36	R0,5	6	6	20	60
EM819080	98	R0,5	8	8	25	70

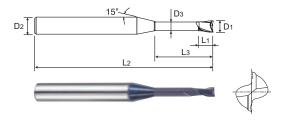
Обозначение	Кол.	R, мм	D1, мм	D2, мм	L1, мм	L2, мм
EM819100	15	R0,5	10	10	30	90
EM819120	49	R0,5	12	12	30	90
EM819908	38	R1,0	12	12	30	90
EM819160	15	R0,5	16	16	50	110

Углеродистые стали	Легированные стали	Улучшенные стали	3	Закалённые стали		Чугуны	Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC					-		сплавы
±	+	+	+	±		±				±		

Серия ЕМ835

✓ 6-и зубые концевые фрезы с угловым радиусом и углом наклона винтовой стружечной канавки 45°

Обозначение	Кол.	R, мм	D1, мм	D2, мм	L1,	L2,
EM835902	10	R1,0	12	12	26	110



Серия ЕМ883

✓ 2-х зубые концевые фрезы для обработки глубоких пазов

Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L3, мм	L2, мм	D3, мм
EM883829	5	1,6	4	2,4	20	55	1,55
EM883972	5	2,5	4	3,7	20	60	2,4

Углеродистые стали	Легированные стали	Улучшенные стали	Закалённые стали			Чугуны	Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC					·		сплавы
±	+	+	+	±		±						



🗸 2-х зубые концевые фрезы для обработки глубоких пазов

Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L3, мм	L2, мм	D3, мм
EM883832	7	3	6	4,5	30	70	2,85
EM883836	6	4	6	6	40	90	3,85

Серия ЕМ839

4-х зубые концевые фрезы с угловым радиусом, укороченной режущей частью и обнижением

AITiN

Обозначение	Кол.	R, мм	D1, мм	D2, мм	L1, мм	L3, мм	L2, мм	D3, мм
EM839020	10	R0,2	2	6	2,5	5	50	1,9
EM839030	5	R0,3	3	6	4	7	50	2,8
EM839050	25	R0,5	5	6	6	12	50	4,6

A

Обозначение	Кол.	R, мм	D1, мм	D2, мм	L1, мм	L3, MM	L2, мм	D3, мм
EM839060	30	R0,6	6	6	7	14	55	5,6
EM839080	23	R0,8	8	8	10	18	60	7,4
EM839120	25	R1,2	12	12	15	30	80	11,4

Серия ЕМ886

2-х зубые радиусные сферические концевые фрезы для обработки глубоких пазов

EM883841

D2

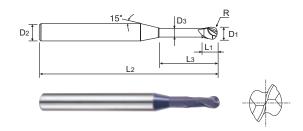
			L2				-	8	
значение	ол.	R(±0,01),	D1,	D2,	L1,	L3,	L2,	D3,	

Обозначение	Кол.	R(±0,01), мм	D1, мм	D2, мм	L1, мм	L3, мм	L2, мм	D3, мм
EM886005	10	R0,25	0,5	4	0,7	2	45	0,45
EM886916	3	R0,3	0,6	4	0,9	6	45	0,55

Обозначение	Кол.	R(±0,01), мм	D1, мм	D2, мм	L1, мм	L3, мм	L2, мм	D3, мм
EM886940	7	R1,0	2	4	4	6	45	1,95

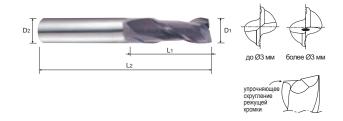
Серия ЕМ886

2-х зубые радиусные сферические концевые фрезы для обработки глубоких пазов


AITIN

Обозначение	Кол.	R(±0,01),	D1, мм	D2, мм	L1, мм	L3, мм	L2, мм	D3, мм
EM886975	5	R2,0	4	6	6	50	100	3,85
EM886956	5	R3,0	6	6	9	50	110	5,85

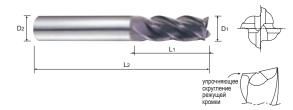
Углеродистые стали	Легированные стали	Улучшенные стали	Закалённые стали			Чугуны	Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC					·		сплавы
±	+	+	+	±		±						



Cepuu EH911

✓ 2-х зубые концевые фрезы с углом наклона винтовой стружечной канавки 35°

Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2, мм
EH911100	1	10	10	22	70



Cepuu EH913

✓ 4-х зубые концевые фрезы с углом наклона винтовой стружечной канавки 35°

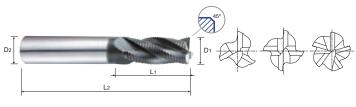
Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2, мм
EH913085	5	8,5	10	19	70
EH913095	5	9,5	10	19	70

Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2, мм
EH913220	5	22	20	38	105

Углеродистые стали	Легированные стали	Улучшенные стали	3	Закалённые стали		Чугуны	Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC					·		сплавы
±	+	+	+							+	+	

Cepuu EH831

✓ Многозубые черновые концевые фрезы



Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2,	Z, шт
EH831070	22	7	8	16	63	3
EH831080	9	8	8	16	63	3
EH831090	27	9	10	19	72	4

Обозначение	Кол.	D1, мм	D2, мм	L1,	L2, MM	Z, шт
EH831140	15	14	14	26	83	4
EH831180	15	18	18	32	92	4
EH831200	29	20	20	38	104	4

Cepuu EH830

✓ 3-х и 4-х зубые концевые фрезы с углом наклона винтовой стружечной канавки 50°

D2	-			
	L2	L1	i	9
'		'	упрочняющее скругление режущей кромки	

Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2, MM	Z, шт
EH830080	29	8	8	19	60	3

Обозначение	Кол.	D1, мм	D2, мм	L1,	L2, мм	Z, шт
EH830250	6	25	25	45	120	4

Серия ЕЕ515

✓ 4-х и 6-и зубые концевые фрезы из порошковой быстрорежущей стали PREMIUM HSS-PM



		D1
	L1	-
•	L2	

Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2,	Z, шт
EE515030	5	3	6	8	52	4
EE515060	9	6	6	13	57	4

Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2, мм	Z, шт
EE515080	5	8	10	19	69	4
EE515100	15	10	10	22	72	4
EE515120	8	12	12	26	83	4
EE515200	3	20	20	38	104	6

Углеродистые стали	Легированные стали	Улучшенные стали	3	калённые стали		Чугуны	Чугуны Медь Графит		Графит Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC							сплавы
±	+	+	+							+	+	±

Cepuu EMB41, EMB14

✓ 4-х зубые концевые фрезы

Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2, мм
EMB41050	25	5	6	10	54
EMB14050	2	5	6	13	57
EMB41080	13	8	8	12	58

Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2, мм
EMB41100	20	10	10	14	66
EMB41120	8	12	12	16	73
EMB14140	5	14	14	26	83
EMB14180	2	18	18	32	92
EMB14250	5	25	25	38	104

Cepuu EMB15

✓ 4-х зубые концевые фрезы с угловым радиусом

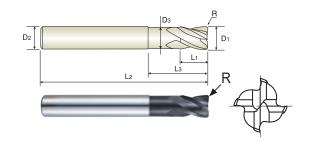
Обозначение	Кол.	R, мм	D1, мм	D2, мм	L1, мм	L2, мм
EMB15140	7	R0,7	14	14	26	83
EMB15250	10	R1,0	25	25	38	104

Cepuu EMB74

4-х зубые радиусные сферические концевые фрезы

Обозначение	Кол.	R (±0,01), мм	D1, мм	D2, мм	L1, мм	L2, мм
EMB74250	10	R12,5	25	25	38	104

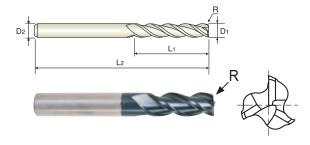

Углеродистые стали	Легированные стали	Улучшенные стали	3	Закалённые стали		Чугуны	Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC							сплавы
±	+	±								+	+	±



Серия ЕІВ88

✓ 4-х зубые концевые фрезы с угловым радиусом

Обозначение	Кол.	R, mm	D1, мм	D2, мм	L1, мм	L3, мм	L2, мм	D3, мм
EIB88902	1	R0.5	10,0	10	12	40	80	9,8



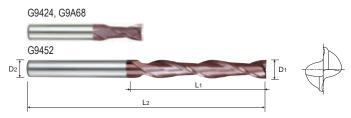
Серия ЕІА13

 3-х зубые концевые фрезы с угловым радиусом и углом наклона винтовой стружечной канавки 40°

Обозначение	Кол.	R, mm	D1, мм	D2, мм	L1, мм	L2, мм
EIA13120	5	R0.5	12,0	12	25	75

Углеродистые стали	Легированные стали	Улучшенные стали	3	Закалённые стали			Медь	Графит	Алюминий	Алюминий Нерж. стали	Титан	CFRP
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC							
								+	±			±

Cepuu G9424*, G9A68, G9452


✓ 2-х зубые концевые фрезы

Обозначение	Кол.	D1, мм	D2, мм	L1,	L2, мм
G9A68020	25	2	3	7	39
G9452903	1	3	3	20	60
G9A68060	44	6	6	19	64
C0468080	a	Q	Q	21	64

НА

Z=2

Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2, мм
G9452912	1	12	12	45	100
G9452918	12	18	18		
G9A68160	2	16	16	32	89

Углеродистые стали	Легированные стали	Улучшенные стали	3	акалённые стал	и	Чугуны	Медь	Медь Графит	ит Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC					·		сплавы
+	+	+				±	±		±	±	±	±

Cepuu G9425*, G9528

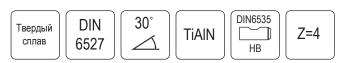
✓ 3-х зубые концевые фрезы

Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2,
G9425090	7	9	9	20	60

Углеродистые стали	Легированные стали	Улучшенные стали	Закалённые стали			Чугуны Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.	
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC							сплавы
+	+	+				±	+		±	±	±	±

Cepuu G9A69, G9432*, G9540, G9453

✓ 4-х зубые концевые фрезы


Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2, мм
G9A69040	2	4	4	14	51
G9A69080	28	8	8	21	64

Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2, мм
G9A69100	19	10	10	22	70
G9A69120	38	12	12	25	76
G9A69160	38	16	16	32	89

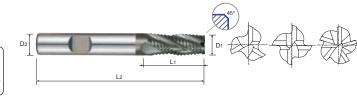
Cepuu G9448, G9449*

✓ 4-х зубые концевые фрезы

Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2, мм
G9449070	10	7	8	16	63

Серия G9A42

✓ Многозубые черновые концевые фрезы

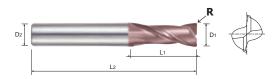


Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2,	Z, MM
G9A42060	13	6	6	16	57	3
G9A42080	10	8	8	16	63	3
G9A42100	16	10	10	22	72	4
G9A42120	3	12	12	26	83	4

Обозначение	Кол.	D1, мм	D2, мм	L1,	L2,	Z, мм
G9A42160	3	16	16	32	92	4
G9A42180	8	18	18	32	92	4
G9A42200	7	20	20	38	104	4

Cepuu G9B82

2-х зубые концевые фрезы с угловым радиусом



Обозначение	Кол.	R, mm	D1, мм	D2, мм	L1, мм	L2, мм
G9B82040	10	R0,2	4	4	8	50
G9B82911	5	R0,3	5	6	10	50

Cepuu G9B85

√ 4-х зубые концевые фрезы с угловым радиусом

Обозначение	Кол.	R, мм	D1, мм	D2, мм	L1, мм	L2, мм
G9B85905	16	R1,0	8	8	16	100
G9B85909	20	R1,0	10	10	20	100

Углеродистые стали	Легированные стали	Улучшенные стали	Закалённые стали			Чугуны Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.	
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC					i i		сплавы
+	+	+				±	±		±	±	±	±

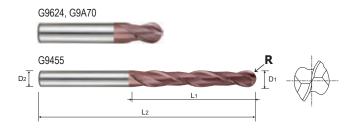
Серия G9634

✓ 4-х зубые укороченные радиусные сферические концевые фрезы.

Обозначение	Кол.	R(±0,02),	D1, мм	D2, мм	L1, мм	L2, мм
G9634020	3	R 1,0	2	6	4	48
G9634100	8	R 5,0	10	10	10	60

Cepuu G9624, G9A70, G9455

✓ 2-х зубые радиусные сферические концевые фрезы



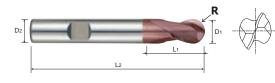
Обозначение	Кол.	R(±0,02), мм	D1, мм	D2, мм	L1, мм	L2, мм
G9624902	5	R 2,5	5	5	14	50
G9624060	7	R 3,0	6	6	7	51
G9455908	23	R 4,0	8	8	30	75
G9455913	2		13	13		

Обозначение	Кол.	R(±0,02), мм	D1, мм	D2, мм	L1, мм	L2, мм
G9624100	10	R 5,0	10	10	10	60
G9624180	3	R 9,0	18	18	18	76
G9624160	3	R 8,0	16	16	16	76
G9624200	2	R 10,0	20	20	20	82

Cepuu G9438

✓ 2-х зубые радиусные сферические концевые фрезы

Твердый сплав DIN 6527



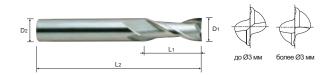
TiAIN

Z=2

Обозначение	Кол.	R(±0,02),	D1, мм	D2, мм	L1, мм	L2,
G9438040	20	R 2,0	4	6	8	57
G9438060	2	R 3,0	6	6	10	57

Обозначение	Кол.	R(±0,02), мм	D1, мм	D2, мм	L1,	L2, мм
G9438080	7	R 4,0	8	8	16	63
G9438100	8	R 5,0	10	10	19	72

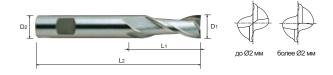
Углеродистые стали	Легированные стали	Улучшенные стали	3	Закалённые стали		Чугуны	Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC					i i		сплавы
+	+	+	+	+		±	±		±	±	±	±



Cepuu E5424

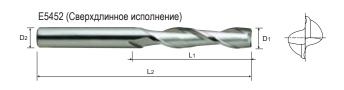
✓ 2-х зубые концевые фрезы

Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2, мм
E5424025	3	2,5	2,5	8	32



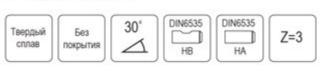
Серия Е5445

✓ 2-х зубые концевые фрезы с утолщенным хвостовиком стандартного исполнения


Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2,
E5445050	8	5	8	10	57

Cepuu E5452

✓ 2-х зубые концевые фрезы



Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2, мм
E5452030	35	3	3	30	75
E5452040	30	4	4	30	75
E5452050	20	5	5	40	100
E5452060	21	6	6	50	150

Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2, мм
E5452080	11	8	8	50	150
E5452100	12	10	10	60	150
E5452200	9	20	20	65	150

Cepuu E5553, E5410*, E5425, E5417

3-х зубые концевые фрезы

Обозначение		D1, MM	D2,	L1,	L2, MM
EM425080	20	8	8	20	60
EM425100	20	10	10	22	70

Cepuu E5433

✓ 3-х зубые концевые фрезы

Обозначение	Кол.	D1, мм	D2, мм	L1,	L2,
E5433040	5	4	6	8	57

Углеродистые стали	Легированные стали	Улучшенные стали	Закалённые стали		Чугуны	Чугуны Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.	
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC			' '				сплавы
±	+	+	+			+	±		±	±		

Cepuu E5415

✓ 3-х зубые укороченные концевые фрезы с углом наклона винтовой стружечной канавки 45°

Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2, MM
E5415060	28	6	6	13	50
E5415080	16	8	8	19	60

Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2, мм
E5415100	27	10	10	22	70
E5415120	10	12	12	26	75
E5415140	20	14	14	26	75
E5415160	13	16	16	25	75

Cepuu E5447

√ 3-х зубые концевые фрезы с углом наклона винтовой стружечной канавки 45°

Обозначение		D1, мм	D2, мм	L1, мм	L2, мм
E5447140	10	14	14	22	83
E5447160	7	16	16	26	92

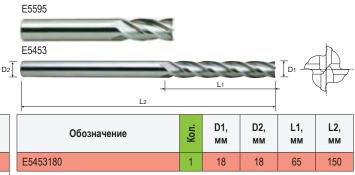
Cepuu E5432, E5595*, E5540, E5453

4-х зубые концевые фрезы

Обозначение		D1, MM	D2, MM	L1, MM	L2, MM
EM453080	10	8	8	50	150
EM453100	10	10	10	60	150
EM453120	10	12	12	75	150
EM453160	12	16	16	80	150

Cepuu E5595, E5453

✓ 4-х зубые концевые фрезы



Обозначение	Кол.	D1, мм	D2, мм	L1,	L2,
E5453040	4	4	4	30	75
E5595060	10	6	6	16	50

DIN6535

НА

Z=4

Углеродистые стали	Легированные стали	Улучшенные стали	3	акалённые стал	и	Чугуны		Графит Ал	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC							сплавы
±	+	+	+			+	±		±	±		

Cepuu E2571, E2510

✓ 2-х зубые концевые фрезы из быстрорежущей стали HSSCo8

HSS Co8

DIN 327/844

	E2571
	E2510
D2	D1
	<u> </u>
	L2

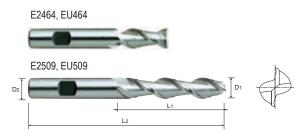
Обозначение		D1,	D2,	L1,	L2,	
Без покрытия	Кол.	ММ	ММ	ММ	ММ	
E2571015	10	1,5	6	7	51	
E2570030	1	3	6	5	49	
E2571030	17	3	6	8	52	
E2570040	8	4	6	7	51	
E2571040	2	4	6	11	55	
E2570050	5	5	6	8	52	
E2571050	13	5	6	13	57	
E2570060	3	6	6	8	52	
E2571060	3	6	6	13	57	
E2570080	15	8	10	11	61	
E2571080	2	8	10	19	69	
E2571100	9	10	10	22	72	
E2570140	5	14	12	16	73	
E2571160	5	16	16	32	92	

Обозначение	Кол.	D1,	D2,	L1,	L2,
Без покрытия	Š	ММ	ММ	ММ	ММ
E2571180	10	18	16	32	92
E2571200	8	20	20	38	104
E2571250	6	25	25	45	121
E2571300	10	30	25	45	121
E2510030	5	-	-	-	-
E2510040	3	-	-	-	-
E2510050	10	-	-	-	-
E2510060	10	-	-	-	-
E2510080	9	-	-	-	-
E2510100	9	-	-	-	-
E2510120	10	-	-	-	-
E2510140	10	-	-	-	-
E2510160	10	-	-	-	-
E2510180	10	-	-	-	-
E2510250	10	-	-	-	-

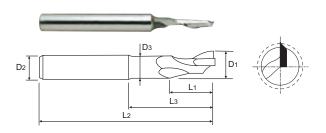
Углеродистые стали	Легированные стали	Улучшенные стали	3	акалённые стал	и	Чугуны	Чугуны Медь	ць Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC					·		сплавы
+	+	±					±		±	±		

Cepuu E2464, E2509

 $\checkmark~~$ 2-х зубые концевые фрезы из быстрорежущей стали HSSCo8 с углом наклона винтовой стружечной канавки 42 $^\circ$



Обозначение		D1, мм	D2, мм	L1, мм	12
Без покрытия		DI, MM	DZ, MM	LI, MM	L2, мм
E2464010	25	1	6	3	49
E2464015	10	1,5	6	5	49
E2509020	8	2	6	10	54
E2509030	8	3	6	12	56
E2509040	23	4	6	19	63
E2509050	48	5	6	24	68
E2509060	42	6	6	24	68
E2509070	10	7	10	30	80


Обозначение		D4	D2	14	10	
Без покрытия		D1, мм	D2, мм	L1, мм	L2, мм	
E2464080	5	8	10	19	69	
E2509100	8	10	10	45	95	
E2464120	8	12	12	26	83	
E2509120	2	12	12	53	110	
E2464140	10	14	12	26	83	
E2509160	7	16	16	63	123	
E2464200	10	20	20	38	104	
E2509200	3	20	20	75	141	

Серия EL612

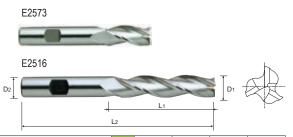
✓ Однозубые концевые фрезы из быстрорежущей стали HSS-E

Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L3, мм	L2, мм	D3, мм
EL612030	2	3	8	12	-	60	-

Углеродистые стали	Легированные стали	Улучшенные стали	3	акалённые стали		Чугуны	Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC	,,						сплавы
±									+			

Cepuu E2573, E2516

✓ 3-х зубые концевые фрезы из быстрорежущей стали HSSCo8



Обозначение	Кол.	D1,	D2,	L1,	L2,
Без покрытия	Š	ММ	ММ	ММ	ММ
E2573030	20	3	6	8	52
E2573040	19	4	6	11	55
E2516050	15	5	6	24	68
E2516060	18	6	6	24	68
E2516080	1	8	10	38	88

Обозначение		D1,	D2,	L1,	L2,
Без покрытия	Кол.	ММ	ММ	ММ	ММ
E2516160	25	16	16	63	123
E2516180	5	18	16	63	123
E2516200	21	20	20	75	141
E2516220	10	22	20	75	141
E2516250	36	25	25	90	166

Cepuu E2595, E2596, E2597

✓ Многозубые концевые фрезы из быстрорежущей стали HSSCo8

DIN 844

	E2595, E2596	
	E2597	
D2		
	<u>L1</u>	The
	L2	

Обозначение	Кол.	D1,	D2,	L1,	L2,	Z,
Без покрытия	Š	ММ	ММ	ММ	ММ	ШТ
E2597030	10	3	6	12	56	4
E2597035	11	3,5	6	15	59	4
E2597040	7	4	6	19	63	4
E2597050	10	5	6	24	68	4
E2597060	5	6	6	24	68	4
E2597080	12	8	10	38	88	4

Обозначение	Кол.	D1, мм	D2,	L1,	L2,	Z, шт
Без покрытия		IVIIVI	IVIIVI	IVIIVI	IVIIVI	ші
E2597100	12	10	10	45	95	4
E2595120	2	12	12	26	83	4
E2597120	28	12	12	53	110	4
E2595160	15	16	16	32	92	4
E2597160	7	16	16	63	123	4
E2596320	1	32	32	53	133	6

Углеродистые стали	Легированные стали	Улучшенные стали	3	акалённые стал	и	Чугуны	Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн. сплавы
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC							
+	+	±					±		±			

Cepuu E2461, E2462

 ✓ Многозубые концевые фрезы из быстрорежущей стали HSSCo8 с углом наклона винтовой стружечной канавки 50°

Обозначение Без покрытия	Кол.	D1, мм	D2, мм	L1, мм	L2, MM	Z, шт
E2461040	10	4	6	11	55	2
E2461050	5	5	6	13	57	2
E2462060	6	6	6	13	57	3

Обозначение	Кол.	D1,	D2,	L1,	L2,	Z,
Без покрытия	Š	MM	ММ	ММ	ММ	ШТ
E2462080	10	8	10	19	69	3
E2462100	7	10	10	22	72	3
E2462120	10	12	12	26	83	3
E2462140	10	14	12	26	83	3

Углеродистые стали	Легированные стали	Улучшенные стали	3	Закалённые стали		Чугуны	Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC					·		сплавы
+	+	±					±					

Cepuu E2410, E2429

 4-х и 6-ти зубые радиусные сферические концевые фрезы из быстрорежущей стали HSSCo8

Обозначение	Кол.	R(±0,02),	D1,	D2,	L1,	L2,	Z,
Без покрытия	3	ММ	ММ	ММ	MM	ММ	ШТ
E2410080	1	R4,0	8	10	19	69	4
E2410100	6	R5,0	10	10	22	72	4

Обозначение		R(±0,02),	D1,	D2,	L1,	L2,	Z,
Без покрытия	Кол.	ММ	ММ	ММ	ММ	ММ	ШТ
E2410120	6	R6,0	12	12	26	83	4
E2429200	5	R10,0	20	20	75	141	4

Cepuu E2751, E2752, E2764

✓ Многозубые черновые концевые фрезы из быстрорежущей стали HSSCo8

DIN 844

	E2751, E2764		45°		
			45	.\	
	E2752			/h .h	√
D2	_0_	The same			7
		L1 L2		до Ø20 мм	более 2
	·		'		

Обозначение	Кол.	D1,	D2,	L1,	L2,	Z,
Без покрытия	중	ММ	ММ	ММ	ММ	ШТ
E2751060	8	6	6	13	57	3
E2752060	10	6	6	24	68	3
E2751080	8	8	10	19	69	3
E2752080	10	8	10	38	88	3
E2751100	10	10	10	22	72	4
E2764120	8	12	12	26	83	3
E2751120	5	12	12	26	83	4
E2752120	5	12	12	53	110	4
E2751140	5	14	12	26	83	4

Обозначение	Кол.	D1,	D2,	L1,	L2,	Z,
Без покрытия	Kc	ММ	ММ	ММ	ММ	ШТ
E2751160	5	16	16	32	92	4
E2752160	5	16	16	63	123	4
E2752180	5	18	16	63	123	4
E2751200	10	20	20	38	104	4
E2752200	5	20	20	75	141	4
E2751240	5	24	25	45	121	5
E2751250	5	25	25	45	121	5
E2752320	3	32	32	106	186	6

Углеродистые стали	Легированные стали	Улучшенные стали	3	акалённые стал	акалённые стали		Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC							сплавы
+	+	±					±		±			

Cepuu E2755, E2756

✓ 3-х зубые черновые концевые фрезы из быстрорежущей стали HSSCo8 с углом наклона винтовой стружечной канавки 37°

E2755	45°
E2756	45°
D2	D1
L2	L1

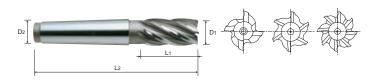
Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2, мм	7	
Без покрытия	포	DI, MM	DZ, MM	LI, MM	LZ, MM	Ζ, шт	
E2755060	18	6	6	13	57	6	
E2755080	28	8	10	19	69	6	
E2755100	18	10	10	22	72	3	

Обозначение	Кол.	D1, мм	D2, мм	L1, мм	L2, мм	7	
Без покрытия	Š	DI, MM	DZ, MM	LI, MM	LZ, MM	Ζ, шτ	
E2755120	20	12	12	26	83	3	
E2755140	20	14	12	26	83	3	

Углеродистые стали	Легированные стали	Улучшенные стали	3	акалённые стал	ın	Чугуны	Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн. сплавы
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC	19191101						
+	+	±					±		+			

Cepuu E2776

Многозубые концевые фрезы из быстрорежущей стали HSSCo8 с хвостовиком конус Морзе



Обозначение	Кол.	D1,	L1,	L2,	Конус Морзе	Z,
Без покрытия	Š	ММ	ММ	ММ	Ko Mo	ШТ
E2776160	6	16	32	117	2	4
E2776180	5	18	32	117	2	4
E2776200	9	20	38	123	2	4
E2776250	7	25	45	147	3	6

Обозначение Без покрытия	Кол.	D1, мм	L1, мм	L2, мм	Конус Морзе	Z, шт
E2776300	3	30	45	147	3	6
E2776400	2	40	63	188	4	6
E2776500	5	50	75	233	5	8

Cepuu E2777

Многозубые черновые концевые фрезы из быстрорежущей стали HSSCo8 с хвостовиком конус Морзе

DIN 845

D2		L1	145	
	L2			
			ı	

Обозначение	Кол.	Обозначение	Кол.	D1,	L1,	L2,	Конус Морзе	Z,
Без покрытия	중	Покрытие TiAIN	ջ	ММ	ММ	ММ	Кон	ШТ
E2777140	8	EQ777140	10	14	26	111	2	4
E2777160	6	EQ777160	8	16	32	117	2	4
E2777180	2	EQ777180	8	18	32	117	2	4
E2777200	8			20	38	123	2	4
		EQ777250	10	25	45	147	3	5

Обозначение	Кол.	Обозначение	Кол.	D1,	L1,	L2,	Конус Морзе	Z,
Без покрытия	δ	Покрытие TiAIN	홍	ММ	ММ	ММ	Ko	ШТ
E2777300	3			30	45	147	3	6
E2777400	3			40	63	188	4	6
E2777500	4			50	75	233	5	6

Углеродистые стали	Легированные стали	Улучшенные стали	Закалённые стали		Чугуны	Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.	
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC							сплавы
+	+	±					±		±			

Cepuu E3462

✓ 3-х и 4-х зубые концевые фрезы из порошковой быстрорежущей стали HSS-PM с углом наклона винтовой стружечной канавки 60°



DIN 844

Обозначение Без покрытия	Кол.	D1, мм	D2, мм	L1, мм	L2, мм	Z, шт
E3462060	10	6	6	13	57	3
E3462070	5	7	10	16	66	3
E3462080	10	8	10	19	69	3
E3462090	5	9	10	19	69	3
E3462100	8	10	10	22	72	3

Обозначение Без покрытия	Кол.	D1, мм	D2, мм	L1, мм	L2, мм	Z, шт
E3462120	3	12	12	26	83	3
E3462160	5	16	16	32	92	3
E3462180	5	18	16	32	92	3
E3462200	5	20	20	38	104	3

Углеродистые стали	Легированные стали	Улучшенные стали	Закалённые стали		Чугуны	Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.	
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC			' '				сплавы
+	+	±					±		±			

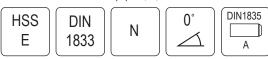
Cepuu E2776, EQ776

✓ Многозубые концевые фрезы из быстрорежущей стали HSSCo8 с хвостовиком конус Морзе

DIN 845

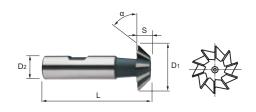
Обозн	ачение	D1,	L1,	L2,	Конус Морзе	Z,	
Без покрытия	Без покрытия Покрытие TiAIN				ММ	8 %	ШТ
	EQ776140	8	14	26	111	2	4
	EQ776160	7	16	32	117	2	4
	EQ776180		18	32	117	2	4
	EQ776250 8		25	45	147	3	6

🛕 Выведена из производственной программы.Возможно наличие на складе.

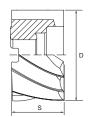

Углеродистые стали	Легированные стали	Улучшенные стали	Закалённые стали			Чугуны	Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC							сплавы
+	+	±					±		±			

Серия МL032

✓ Фрезы из быстрорежущей стали HSS-E для обработки пазов типа "ласточкин хвост" форм B, D, F


Обозначение		D1, мм	S, MM	α	D2, мм	L, mm	Z
ML03202001 4		20,0	5	45°	12	63	6

Серия Е2676

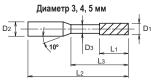

✓ Многозубые цилиндрические насадные фрезы для обработки алюминия из быстрорежущей стали HSSCo8

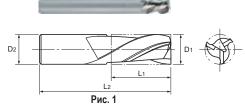
алюминия из быстрорежущей стали HSSCo8											
HSS Co8	DIN 841	W	42°	Z=4							

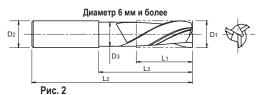
Обозначение		D, мм	S, MM	d, мм	Z
E2676500	9	50,0	25	22	6

Cepuu AL-SEES3, AL-SEEZ3

- ✓ Короткая рабочая часть обеспечивает высокую жесткость инструмента
- Производительность в 1.5 раза выше, чем у 2-х зубого исполнения
- У Возможность врезания под углом и методом круговой интерполяции







Обозначение		Рис.	D1, мм	D2, мм	L1, мм	L2, мм
AL-SEES3100	1	1	10	10	15	75

Углеродистые стали	Легированные стали	Улучшенные стали	3	акалённые стал	и	Чугуны	Медь	Графит	Алюминий	Нерж. стали	Пластики	
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC			' '		· ·		
							±		+			

Cepuu AL-SEESS, AL-SEES2, AL-SEEL2

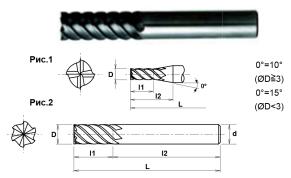
- ✓ Разработаны специально для обработки алюминиевых сплавов и неметаллических материалов
- Специальная геометрия режущего клина и стружечной канавки, обеспечивает низкие силы резания и снижает риск образования вибраций
- У Большая производительность за счёт работы с высокими скоростями
- Высокая размерная стойкость обеспечивает прецизионную обработку и позволяет достичь высокого качества обрабатываемой поверхности

Обозначение		D1, мм	L1, мм	L2, мм	D2, мм
AL-SEES2030	1	3	11	50	6

Обозначение		D1, мм	L1, мм	L2, мм	D2, мм
AL-SEES2140	8	14	40	95	16

	Углеродистые стали	Легированные стали	Улучшенные стали	3	акалённые стал	И	Чугуны	Медь	Графит	Алюминий	Нерж. стали	Пластики
	менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC					·	
AL-SEESS								±		+		±
AL-SEES2								±		+		±
AL-SEEL2								±		+		

⁺ оптимальный выбор; ± возможное применение



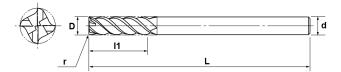
о на складе в Европе; ● на складе в Москве

Концевые цельнотвердосплавные фрезы

Тип DV-SEH, DV-SEH-R02 и DV-SEHLS-R02

- 4, 6 и 8 зубьев, угол спирали 50°, обработка закаленных сталей до 70 HRC

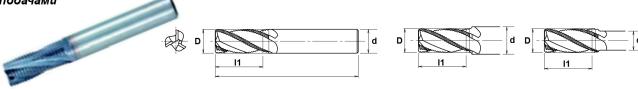
DV-SEH


	Номер		име вде		P	азме	еры,	мм		Duc
l	r	ю каталогу	dame HI CKUI	D	11	12	L	d	Z	FNC.
I		DV-SEHH4050	10	5.0	15	19	60	6	4	1
		DV-SEHH6060	13	6.0	15	-	60	6	6	2

Концевые фрезы с радиусом на периферии

Tun DZ-SOCS, DZ-SOCM и DZ-SOCLS

- 4 зуба, угол спирали 45°, угловой радиус


DZ-SOCS

	Номер	A 4100		Раз	меры,	ММ	
	по каталогу	Han	D	r	11	L	d
D	Z-SOCS4200-20	2	20.0	2.0	38	125	20

Концевые цельнотвердосплавные фрезы

Tun DZ-OCRS

- 3 и 4 зуба, угол спирали 20°, для черновой обработки с низкими скоростями резания и высокими подачами

Номер	a age		Pas	меры,	мм	
по каталогу	E E	D	11	L	d	Z
DZ-OCRS4120	10	12.0	28	83	12	4

Высокопроизводительный режущий инструмент

Концевые фрезы из ультра мелкозернистого твердого сплава

Серия НР441

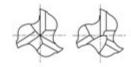

Четырехзубая; угол наклона стружечной канавки ω=35°; заточенный торец; покрытие TIAIN

Каталожный номер	D1, MM	D2, MM	L2, MM	L1, MM	
HP441-3150	8	8	21	64	7
HP441-6299	16	16	32	89	3

ТВЕРДОСПЛАВНЫЕ ФРЕЗЫ С З ЗУБЬЯМИ, КОРОТКИЕ, УГОЛ НАКЛОНА СПИРАЛИ 45°

e.	Æ.	303	M.	: M	м
_	•				

А	Артикул Цилиндрич. с лыской		Диаметр фрезы	Диаметр хвостовика	Длина реж.части	Общая длина
цилиндрич.			h10	h6	and the same of th	
E5423080	2	E5415080	8.0	8	19	60
E5423140	3	E5415140	14.0	14	26	75
E5423160	2	E5415160	16.0	16	25	75
E5423200	3	E5415200	20.0	20	32	100



PREMIUM HSS-PM, 3 FLUTE SHORT LENGTH

- PREMIUM HSS-PM, 3 SCHNEIDEN KURZ
- FRAISES HSS-PM PREMIUM, 3 DENTS, SÉRIE COURTE
- **■ 3 TAGLIENTI, SERIE CORTA, HSS-PM**
- ▶ Designed to machine carbon steels, alloyed steels, stainless steels.
- Well balanced web design to minimize deflection and chattering.
- 3 flute design possess the advantage of 2 flute and 4 flute
- ➤ YG-1's new developed TANK-POWER Coating suitable for high speed cutting.
- ▶ Geeignet zum Fräsen von Stahl, legiertem Stahl und rostfreier Stahl.
- Verstärkter Kern zur Erhöhung der Stabilität.
- ▶ 3 Schneiden Design besitzt die Vorteile von 2-bzw 4 Schneiden
- ▶ Neuentwickelte Beschichtung für Hochgeschwindigkeitsfräsen.

up to Ø1mm over Ø1mm

E9A30120

3

Unit: mm

1	DP I	No.	Mill Diameter	Shank Diameter	Length	Overall
UNCOATED		TANK-POWER COATED	e8	h6	of Cut	Length
E9A30100 5		10.0	10	22	72	
E9A30080	5					

Твердый

Твердосплавные концевые фрезы ALU-POWER

Серия EG908

Без

покрытия

 З-х зубые радиусные сферические концевые фрезы с углом наклона винтовой стружечной канавки 40" и покрытием Т/CN

40°

TiCN

10

15 30 80

9.4

Углеродистые стали	Легированные стали	Улучшенные стали	3	акалённые стал	и	Чугуны	Медь	Иедь Графит	Алюминий	Нерж.	Титан	Жарогрочн
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC					стапи		сплавы
							±		+			

EG908100

5

R5.0

10

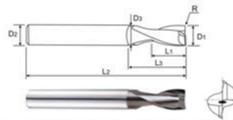
Z=3

+ оптимальный выбор; ± возможное применение

Твердосплавные концевые фрезы ALU-POWER

Серия EG930

2-х зубые концевые фрезы с углом наклона винтовой стружечной канавки 25° с угловым радиусом и покрытием TiCN



Без покрытия

Обозначение	На складе	R, MM	D1, MM	D2, MM	L1,	L3, MM	L2, MM	D3,
EG930020	6	R0,2	2	3	3	6	40	1,9
EG930030	1	R0,2	3	3	4	8	40	2,9
EG930040	11	R0,2	4	4	5	12	50	3,8
EG930050	3	R0,2	5	5	8	14	50	4,8

Обозначение	На складе	R, MM	D1,	D2, MM	L1, MM	L3, MM	L2, MM	D3,
EG930080	5	R0,2	8	8	10	22	70	7,7
EG930100	6	R0,2	10	10	14	28	80	9,7
EG930120	5	R0,2	12	12	16	35	90	11,5

Углеродистые стали	Легированные стали	Улучшенные стали	3	Какалённые стал	114	Чугуны	Медь Г	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн. сплавы
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC							
							±		*			

⁺ оптимальный выбор; ± возможное применение

4-Х ЗУБЫЕ КОНЦЕВЫЕ ФРЕЗЫ С УГЛОМ НАКЛОНА ВИНТОВОЙ СТРУЖЕЧНОЙ КАНАВКИ 35°

- Изготовлены из особомелкозернистого твёрдого сплава.
- Упрочняющее скругление режущей кромки снижает вероятность её выкрашивания.
- ▶ Предназначены для обработки закалённых сталей до 45 HRC, легированных, инструментальных, нержавеющих сталей и титана.

						Размеры в мм
188 miles	од	ı	Диаметр	Диаметр	Длина режущей	Общая
Ципиндрический хвостовик	Цилиндрический Хвостовик хвостовик Weldon		фрезы	хвостовика	части	длина
	EH914901		2,0	6	6	40

Твердосплавные концевые фрезы X-POWER

Cepuu EM811,

- 4-х зубые концевые фрезы
- 4-х зубые удлиненные концевые фрезы

_	
1	L1
	12

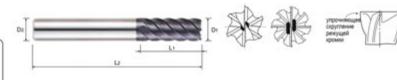
Обозначение		D1, MM	D2, MM	L1, MM	L2, MM
EH811901	29	2	6	6	40

Обозначение	D1,	D2,	L1,	L2,	
	MM	MM	MM	MM	
EH811250	10	25	25	45	120

Углеродистые стали	Легированные стали	Улучшенные стали	3	акалённые стал	м	Чугуны	Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC							сплавы
*			+	±		*				*		

Серия ЕМ812, ЕМ822*

 6-и и 8-и зубые концевые фрезы с углом наклона винтовой стружечной канавки 45°



Обозначение	D1,	D2,	L1,	L2,	Z,
	MM	MM	MM	MM	wt
EM812160 4	16	16	32	92	6

	Углеродистые стали	Легированные стали	Улучшенные стали	3	акалённые стал	и	Чугуны	Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн. сплавы
1	менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC	0.000		a de la constante de la consta				ступавы
1	±			+	±								

КОНЦЕВЫЕ ФРЕЗЫ С 4 ЗУБЬЯМИ, КОРОТКИЕ

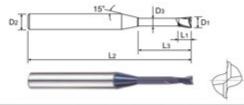
- ▶ Предназначены для обработки инструментальной, легированной сталей, стали для литейных форм и других закалённых материалов.
- ▶ Наличие 4 зубъев позволяет добиться лучшего качества обработанной поверхности.
- Увеличенная производительность.

					2	E,	диница измерения: мм
Артикул				Диаметр	Диаметр	Длина	Общая
цил. хвост.		С ЛЫСКОЙ		фрезы	хвостовика	реж.части	длина
EM811220	20	EM821220	20	22.0	20	38	105
EM811250	10	EM821250	10	25.0	25	45	120

Твердосплавные концевые фрезы X-POWER

Серия ЕМ883

2-х зубые концевые фрезы для обработки глубоких пазов



Обозначение	D1, MM	D2, MM	L1, MM	L3, MM	L2, MM	D3, MM	
EM883976	8	3	6	4,5	12	45	2,85
EM883978	15	3	6	4,5	16	55	2,85
EM883966	10	2	4	3	25	60	1,95

Обозначение		D1, MM	D2, MM	L1, MM	L3, MM	L2, MM	D3, MM
EM883801	10	4	6	6	16	60	3,85
EM883802	8	4	6	6	20	60	3,85

CARBIDE, 4 FLUTE MULTIPLE HELIX LONG LENGTH

- ▶ Special flute geometry and multiple helix eliminate vibrations
- ▶ Designed to machine mild steels, cast irons, tool steels, and low hardened steels up to HRc 40.
- Excellent work piece finishes.
- ▶ Higher speeds, deeper cuts, and higher metal removal rates.

EDP No.			_ Mill	Shank	Length	Overall	
PLAIN		FLAT		Diameter	Diameter	of Cut	Length
EMD38160	5			16.0	16	32	92
		EMD39200	43	20.0	20	38	104
EMD38250	8			25.0	25	38	104

ЦИЛИНДРИЧЕСКИЙ **ХВОСТОВИК**

с лыской

КОНЦЕВЫЕ ФРЕЗЫ С 4 ЗУБЬЯМИ И ПЕРЕМЕННЫМ УГЛОМ НАКЛОНА СПИРАЛИ, КОРОТКИЕ

- Специальная геометрия канавок и переменный угол наклона спирали способствуют устранению вибраций при обработке.
- Предназначены для обработки мягкой стали, чугуна, инструментальной стали и материалов с низкой твёрдостью до HRc40.
- Отличное качество обработанной поверхности.
- ▶ Подходят для высокоскоростной обработки. Обеспечивают большую глубину реза и более высокую скорость съёма металла.

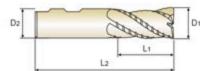
			N.	p)	E,	диница измерения: мы
A	ртику	n	Диаметр	Диаметр	Длина	Общая
цил. хвост.		с лыской	фрезы	хвостовика	реж.части	длина
EMD42140	5		14.0	14	18	75
EMD42180	5		18.0	18	24	84

КОНЦЕВЫЕ РАДИУСНЫЕ ФРЕЗЫ С 4 ЗУБЬЯМИ И ПЕРЕМЕННЫМ УГЛОМ НАКЛОНА СПИРАЛИ, КОРОТКИЕ

- ▶ Специальная геометрия канавок и переменный угол наклона спирали способствуют устранению вибраций при обработке.
- ▶ Предназначены для обработки мягкой стали, чугуна, инструментальной стали и материалов с низкой твёрдостью до HRc40.
- Отличное качество обработанной поверхности.
- ▶ Подходят для высокоскоростной обработки. Обеспечивают бо́льшую глубину реза и более высокую скорость съёма металла.

Единица измерения: мм

Арти	кул	Угловой радиус	Диаметр	Диаметр	Длина	Общая
цил. хвост.	С ЛЫСКОЙ	R	фрезы	хвостовика	реж.части	длина
EMD44200 27	7	RO.8	20.0	20	26	92



КОРОТКИЕ ФРЕЗЫ ИЗ ПОРОШКОВОЙ БЫСТРОРЕЖУЩЕЙ СТАЛИ С ПОКРЫТИЕМ TIAIN, С 3 ЗУБЬЯМИ, ДЛЯ ЧЕРНОВОЙ ОБРАБОТКИ, УГОЛ НАКЛОНА СПИРАЛИ 42°

- Максимальная скорость съёма металла на высокой скорости обработки.
- Уменьшение вибраций при обработке и высокое качество обработанной поверхности.
 Минимальное скалывание режущих кромок.

Арти	ікул	Диаметр фрезы	Диаметр хвостовика	Длина реж. части	Общая длина	Фаска
цилиндрич.	с лыской	D1(js12)	D2(h6)	L1	L2	
EP922320 3		32.0	32	53	133	1.22

PREMIUM HSS-PM, 3 FLUTE 42° HELIX ROUGHING LONG LENGTH TIAIN COATED PREMIUM HSS-PM, 3 SCHNEIDEN 42° RECHTSSPIRALE SCHRUPPFR SER LANG TIAIN-BESCHICHTET

- Maximum stock removal rates at High Speed Condition.
- Reduces vibrations and improves surface roughness.
- Sehr gute Spanabfuhr auch bei Hochgeschwindigkeitfräsen.
- ▶ Reduziert Vibrieren und verbessert Oberflächenrauheit.

EDP	No.	Mill Diameter	Shank Diameter	Length	Overall
PLAIN	FLAT	js12	h6	of Cut	Length
EP924320 1		32.0	32	106	186

Твердосплавные концевые фрезы ALU-POWER

Серия ЕР924

√ 3-х зубые черновые и удлиненные концевые фрезы с углом наклона винтовой стружечной канавки 42° и покрытием TiAIN из порошковой быстрорежущей степи PREMIUM HSS-PM

	Обозна	ачение	1						Обозначе		Обозначение						
Цилиндрические	На складе		стовиком /eldon	На складе	D1, MM	D2, MM		100000000000000000000000000000000000000	Цилиндрически	на складе		С хвостовиком Weldon	На складе	D1, MM	D2, MM	L1 MN	
EP924140	5		ta		14	12	53	110	EP924160	5				16	16	63	123
Углеродистые стали	Легиров ста		Улучшен стали			3axan	ённые стал	и	Чугуны	Медь		Графит Ал	юминий	Нера		итан	Жаропроч
менее НВ 225	HB 225	- 325	30 - 40 H	IRC	40 - 45 HR	C 45	- 55 HRC	55 - 70 HRC						стал	М	711-950	сплавы
						71 77			*	*			+				

⁺ оптимальный выбор; ± возможное применение

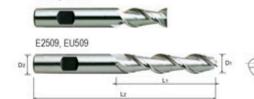
Быстрорежущие концевые фрезы GENERAL HSS

E2464, EU464

Cepuu E2464, EU464, E2509, EU509

 ✓ 2-х зубые концевые фрезы из быстрорежущей стали HSSCo8 с углом наклона винтовой стружечной канавки 42°

DIN 844



В

,	JOOJH	ачение					
Без покрытия	На складе	Покрытие Hardslick	На складе	D1, MM	D2,	L1, MM	L2, MM
		EU464030	1	3	6	8	52
		EU464040	2	4	6	11	55
		EU464050	2	5	6	13	57
		EU509050	10	5	6	24	68
		EU464060	2	6	6	13	57
		EU509060	10	6	6	24	68
		EU464080	2	8	10	19	69
		EU509080	10	8	10	38	88

(Эрозн	ачение					
Без покрытия	На складе	Покрытие Hardslick	На складе	D1, MM	D2, MM	L1, MM	L2, MM
		EU464120	2	12	12	26	83
		EU509120	5	12	12	53	110
		EU464140	2	14	12	26	83
		EU509140	10	14	12	53	110
		EU464160	1	16	16	32	92
10		EU509160	10	16	16	63	123
- 4		EU464180	7	18	16	32	92
2.2	10	EU509180	9	18	16	63	123
		EU464250	10	25	25	45	121

Cepuu G8A47, G8A37, G8B08

4-х зубые концевые фрезы с угловым радиусом

30 - 40 HRC

Нерж. стали

HB 225 - 325

менее НВ 225

Быстрорежущие концевые фрезы TANK-POWER

Апюминий

Графит

Серия GA938

4-х зубые концевые фрезы

L2, MM

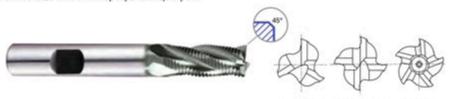
83

Обозначение	10					Обозначение				
Похрытие TANK POWER	На складе	D1, MM	D2, MM	L1, MM	L2, MM	Похрытие TANK POWER	На складе	D1, MM	D2, MM	L1, MM
GA938030	15	3	6	8	52	GA938120	19	12	12	26

40 - 45 HRC 45 - 55 HRC 55 - 70 HRC

Углеродистые стали	Легированные стапи	Улучшенные стали	3	акалённые стал	и	Чугуны	Медь	Графит	Алюминий	Нерж, стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC		1000000				200000	CITITIBISM
+	+	±				+				±		

оптимальный выбор; ± возможное применение



⁺ оптимальный выбор; ± возможное применение

КОНЦЕВЫЕ ФРЕЗЫ ИЗ УЛУЧШЕННОЙ ПОРОШКОВОЙ БЫСТРОРЕЖУЩЕЙ СТАЛИ, КОРОТКИЕ, ДЛЯ ЧЕРНОВОЙ ОБРАБОТКИ – МЕЛКИЙ ШАГ

- Подходят для высокоскоростного чернового фрезерования.
- Предназначены для обработки углеродистой стали, легированной стали, нержавеющей стали.
- Отличное качество обработанной поверхности.
- ▶ Благодаря наличию покрытия TANK-POWER, разработанного компанией YG-1, подходят для высокоскоростной обработки.
- ▶ Фрезы диаметром менее Ø20 мм: с перекрытым центром,
- ▶ Фрезы диаметром более Ø20 мм: с не перекрытым центром

C.1366-1367

								Едизм: мм
Ap	отикул		Диаметр фрезы	Диаметр хвостовика	Длина реж. части	Общая длина	Кол-во зубьев	Фаска
БЕЗ ПОКРЫИЯ	TANK-POWER		js12	h6	части		Зуобев	
	GA941250	2	25.0	25	45	121	5	0.36



СЕРИЯ С ЛЫСКОЙ

КОНЦЕВЫЕ ФРЕЗЫ ИЗ УЛУЧШЕННОЙ ПОРОШКОВОЙ БЫСТРОРЕЖУЩЕЙ СТАЛИ, С 3 ЗУБЬЯМИ, КОРОТКИЕ

- ▶ Предназначены для обработки углеродистой стали, легированной стали, нержавеющей стали.
- Специальный дизайн перемычки позволяет свести к минимуму отгиб и вибрации при обработке.
- ▶ Данные концевые фрезы с 3 зубьями обладают преимуществами концевых фрез с 2 и 4 зубьями.
- ▶ Благодаря наличию покрытия TANK-POWER, разработанного компанией YG-1, подходят для высокоскоростной обработки.

более Ø 1мм

				E,	диница измерения: мм
Артикул		Диаметр фрезы	Диаметр хвостовика	Длина реж.	Общая
ПОКРЫТИЕ TANK-POWER		e8	h6	части	длина
GAA30030	6	3.0	6	8	52
GAA30040	6	4.0	6	11	55
GAA30060	6	6.0	6	13	57
GAA30080	6	8.0	10	19	69
GAA30120	1	12.0	12	26	83
GAA30140	6	14.0	12	26	83
GAA30160	6	16.0	16	32	92
GAA30180	6	18.0	16	32	92
C	2	05.0	OF	AE	404

GAA33 серия

СЕРИЯ С ЛЫСКОЙ

КОНЦЕВЫЕ ФРЕЗЫ ИЗ УЛУЧШЕННОЙ ПОРОШКОВОЙ БЫСТРОРЕЖУЩЕЙ СТАЛИ, КОРОТКИЕ, ДЛЯ ЧЕРНОВОЙ ОБРАБОТКИ – КРУПНЫЙ ШАГ

- Подходят для высокоскоростного чернового фрезерования.
- Предназначены для обработки углеродистой стали, легированной стали, нержавеющей стали.
- ▶ Благодаря наличию покрытия TANK-POWER, разработанного компанией YG-1, подходят для высокоскоростной обработки.
- Фрезы диаметром менее Ø20 мм: с перекрытым центром. Фрезы диаметром более Ø20 мм: с не перекрытым центром

					Еди	ница измерения: г
Артикул		Диаметр фрезы	Диаметр хвостовика	Длина реж.	Общая	Кол-во
ПОКРЫТИЕ TANK-POWER		js12	h6	части	длина	зубьев
GAA33140	6	14.0	12	26	83	4
GAA33180	5	18.0	16	32	92	4

СЕРИЯ С ЛЫСКОЙ

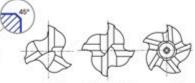
КОНЦЕВЫЕ ФРЕЗЫ ИЗ УЛУЧШЕННОЙ ПОРОШКОВОЙ БЫСТРОРЕЖУЩЕЙ СТАЛИ, ДЛИННЫЕ, ДЛЯ ЧЕРНОВОЙ ОБРАБОТКИ – КРУПНЫЙ ШАГ

- Подходят для высокоскоростного чернового фрезерования.
- Предназначены для обработки углеродистой стали, легированной стали, нержавеющей стали.
- ▶ Благодаря наличию покрытия TANK-POWER, разработанного компанией YG-1, подходят для высокоскоростной обработки.
- Фрезы диаметром менее Ø20 мм: с перекрытым центром. Фрезы диаметром более Ø20 мм: с не перекрытым центром

менее Ø 9 Ø 10 ~ Ø 20 более Ø 20

Артикул		Диаметр фрезы	Диаметр хвостовика	Длина реж.	Общая	Кол-во
ПОКРЫТИЕ TANK-POWER		js12	h6	части	длина	зубьев
GAA34140	6	14.0	12	53	110	4
GAA34160	6	16.0	16	63	123	4
GAA34180	5	18.0	16	63	123	4

PREMIUM HSS-PM, MULTI FLUTE LONG LENGTH ROUGHING - COARSE


PREMIUM HSS-PM, MULTI SCHNEIDEN LANG SCHRUPFRÄSER - GROB

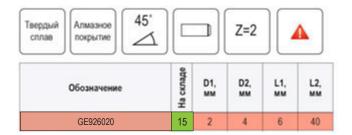
■ FRAISES HSS-PM PREMIUM, MULTI-DENTS RAVAGEUSE - PAS GROSSIERS, SÉRIE LONGUE

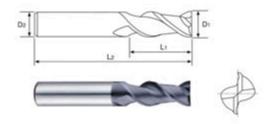
■ MULTI TAGL., PER SGROSSATURA, SERIE LUNGA, BOMBATO GROSSO - HSS PM

- Suitable for high-feed roughing milling.
- ▶ Designed to machine carbon steels, alloyed steels, stainless steels.
- ▶ YG-1's new developed TANK-POWER Coating suitable for high speed cutting.
- ▶ up to Ø20 : center cut, over Ø20 : non center cut
- ▶ Geeignet zum HSC Schrupp Fräsen.
- ▶ Geeignet zum Fräsen von Stahl, legiertem Stahl und rostfreier Stahl.
- Neuentwickelte Beschichtung für Hochgeschwindigkeitsfräsen.
- ▶ Bis D<=20mm : mit Zentrumschnitt, über D<=20mm : Ohne Zentrumschnitt.</p>

up to Ø9 Ø10 ~ Ø20 over Ø20

=======================================	OP No.	4	Mill Diameter	Shank Diameter	Length of Cut	Overall Length	No. of Flute	Chamfer
UNCOATED	TANK-POWER COATED		js12	h6				0.05
E9A34060	GAA34060	1	6.0	6	24	68	3	0.25
E9A34080	GAA34080	1	8.0	10	38	88	3	0.25
E9A34100	GAA34100	3	10.0	10	45	95	4	0.36





Твердосплавные концевые фрезы D-POWER

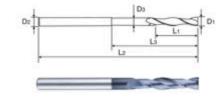
Серия GE926

2-х зубые концевые фрезы с углом наклона винтовой стружечной канавки 45°

Углеродистые стали	Легированные стали	Улучшенные стали	3	Закалённые стали			Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC			Control of				сплавы
				L					±			

⁺ оптимальный выбор; ± возможное применение

Продукция выведена со склада. Выполняется под заказ.



Твердосплавные концевые фрезы D-POWER

Серия GE927

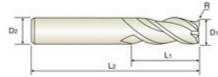
2-х зубые удлиненные концевые фрезы

Обозначение	На складе	D1, MM	D2, MM	L1,	L3,	L2,	D3,	Обозначение	На складе	D1, MM	D2, MM	L1, MM	L3,	L2,	D3,
GE927020	12	2	4	6	16	100	1,9	GE927080	7	8	8	40	80	150	7.4
GE927030	2	3	6	8	30	100	2,8	GE927120	3	12	12	55	80	150	11,4

Углеродистые стали	Легированные стали	Улучшенные стали	3	акалённые стал	и	Чугуны	Медь	Графит	Алюминий	Нерж. стали	Титан	Жаропрочн.
менее НВ 225	HB 225 - 325	30 - 40 HRC	40 - 45 HRC	45 - 55 HRC	55 - 70 HRC			10.000				сплавы
1							. +		±			

⁺ оптимальный выбор; ± возможное применение

Продукция выведена со склада. Выполняется под заказ.

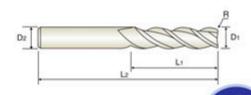

CARBIDE, 3 FLUTE 40° HELIX SHORT LENGTH CORNER RADIUS **VOLLHARTMETALL, 3 SCHMEIDEN 40° RECHTSSPIRALE KURZ ECKENRADIUS**

- ▶ Designed for the machining reinforced plastics, aluminum alloys and copper alloys.
- YG-1's newly developed diamond film coating allows a good result for the machining non-ferrous metals and non-metallic materials
- Corner radius against chipping.

- ▶ Zum Zerspanen von verstärkten Verbundmaterialien, Silikon-Aluminium Legierung, Kupfer-Legierungen.
- ▶ Die neuentwickelte Diamantfilmbeschichtung ermöglicht hervorragende Zerspanergebnisse von Nichteisenmetallen und nichtmetallischen Materialien.
- Eckenradius gegen Abbröckelung

EDP No.		Corner Radius	Mill Diameter	Shank Diameter	Length of Cut	Overall Length
		R	D1	D ₂	L1	L2
GE928080	14	RO.5	8.0	8	20	65
GE928100	9	RO.5	10.0	10	25	75
GE928120	11					

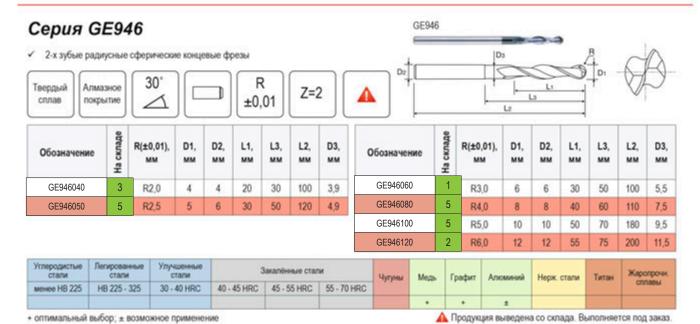
PLAIN SHANK GLATTER ZYLINDERSCHAFT


CARBIDE, 3 FLUTE 40° HELIX LONG LENGTH CORNER RADIUS VOLLHARTMETALL, 3 SCHMEIDEN 40° RECHTSSPIRALE LANG ECKENRADIUS

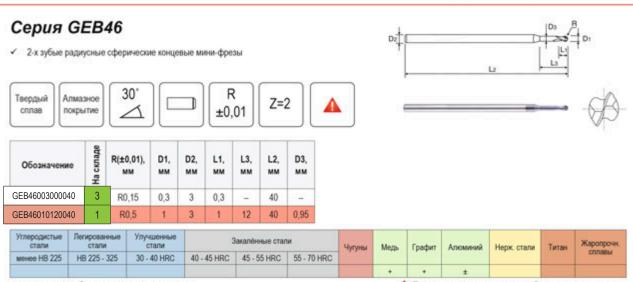
- ▶ Designed for the machining reinforced plastics, aluminum alloys and copper alloys.
- YG-1's newly developed diamond film coating allows a good result for the machining non-ferrous metals and non-metallic
- Corner radius against chipping.

- ▶ Zum Zerspanen von verstärkten Verbundmaterialien, Silikon-Aluminium Legierung, Kupfer-Legierungen.
- ▶ Die neuentwickelte Diamantfilmbeschichtung ermöglicht hervorragende Zerspanergebnisse von Nichteisenmetallen und nichtmetallischen Materialien.
- ▶ Eckenradius gegen Abbröckelung

EDP No.		Corner Radius	Mill Diameter	Shank Diameter	Length of Cut	Overall Length
		R	D1	D ₂	L1	L2
GE929030	3	RO.15	3.0	3	30	60


Твердосплавные концевые фрезы D-POWER

Серия GE944 2-х зубые радиусные сферические концевые фрезы с утопщенным хвостовиком 30° Твердый сплав Алмазное Z=2 ±0,01 покрытие На складе R (±0,01), D1, D2, L1, L3, L2, D3, Обозначение мм мм мм MM мм мм GE944080 R4,0 75 12 25 7,4 GE944060 Закалённые стали стали Графит 45 - 55 HRC 55 - 70 HRC 30 - 40 HRC 40 - 45 HRC менее НВ 225 HB 225 - 325 + оптимальный выбор; ± возможное применение Продукция выведена со склада. Выполняется под заказ.

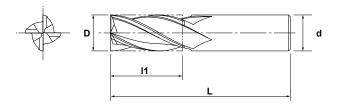


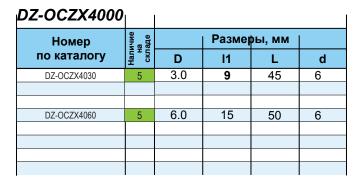
Твердосплавные концевые фрезы D-POWER

Твердосплавные концевые фрезы D-POWER

■ Фрезы GB-SBR (нормальной длины)

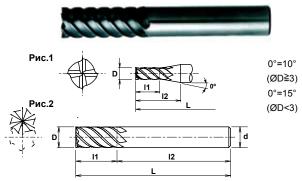
Каталожный	ние паде			ı	Размер	ры, мм	ı		
номер	Нали на ск	R	øD	l1	l2	l3	L	ød	Z
GF-SBR 2060	4	3.0	6.0	30	40	60	100	6	2
GF-SBR 2080	5	4.0	8.0	40	50	60	110	8	2


■ Фрезы DZ-OCRS (нормальной длины)



Каталожный	личие складе				Разме	ры, мм		
номер	Нали на ск	øD	I	L	ød	Z		
DZ-OCRS4120	10	12.0	28	83	12	4		

Концевые цельнотвердосплавные фрезы



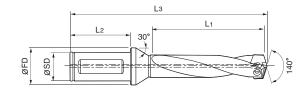
Тип DV-SEH, DV-SEH-R02 и DV-SEHLS-R02

- 4, 6 и 8 убьев, угол спирали 50°, обработка закаленных сталей до 70 HRC

DV-SEH

	Номер	ичие на таде		Р	азме	еры,	мм		Рис.
I	по каталогу	Нали СКТ	D	11	12	L	d		гис.
	DV-SEHH6120	5	12.0	30	-	100	12	6	2
	DV-SEHH6200	5	20.0	45	-	125	20	6	2

Сверла серии i-dream - сверла со сменными пластинами из твердого сплава


Пластины i-dream

- ✓ Точное позиционирование и надежное закрепление
- ✓ Острозаточенная геометрия
- ✓ Минимальные усилия резания
- ✓ Низкая вероятность наростообразования
- ✓ Мягкое резание
- ✓ 2 типа пластин:
 - Пластины для общего применения
 - Пластины для обработки нержавеющих сталей

Корпуса i-dream

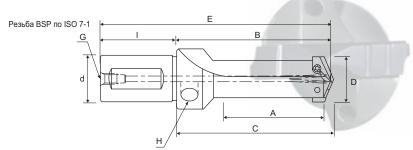
- Специально разработанная для корпусов сверл i-Dream легированная сталь сохраняет прочность и твердость при высоких температурах во время резания
- ✓ Покрытие снижает вероятность появления коррозии
- ✓ Оптимизированная геометрия стружечных канавок для эффективного удаления стружки из зоны резания

Корпуса поставляются без пластин

	Обо	ЗН	ачение			F 6 .			0.0					
Диапазон диаметров, мм	TiAIN общего применен	ия	ТіСN обработка нерж. ста	лей	Диаметр пластин, h7, мм	Глубина сверления, мм	Корпус		SD, MM	L2, мм	FD, MM	L1, мм	L3, мм	Винт
	-	-	YA2C1200	5	12	3D	-	-	-00		0.5	52	121	~
40.00.40.0	-	-	YA2C1210	10	12,1	5D 7D	-	-	20	50	25	77 101	146 170	3708
12,00-13,8	YA1A1300	9	-	-	13	3D 5D 7D	ZH13003020 ZH13005020 -	3 2 -	20	50	25	56 83 110	124 151 178	TX1213T08
14,00-15,8	YB1A1400	13	-	-	14	3D 5D 7D	-	-	20	50	25	59 88 117	126 155 184	TX1415T08
	-	-	-	-	15	3D	ZH15003020	4				63	420	90
14,00-15,8	-	-	-	-	15,1	5D	ZH15003020	1	20	50	25	94	130	TX1415T08
14,00 10,0	-	-	-	-	15,2	7D	-	-	20		20	125	192	X14
	-	-	-	-	15,3	0.0	71140000000	_				0.5	404	
40.00.47.0	-	-	-	-	16	3D 5D 7D	ZH16003020 - ZH16007020	2 - 1	20	50	25	65 98 131	131 164 197	7108
16,00-17,8	-	-	-	-	17	3D 5D 7D	- - -	-	20	50	25	69 104 139	134 169 204	TX1617T08
18,00-19,8	-			-	18	3D 5D 7D	-	-	25	56	32	72 109 146	149 186 223	TX1819T15
20,00-21,7	-	-	-	-	20	3D 5D 7D	- ZH20005025 -	1 -	25	56	32	77 118 159	152 193 234	TX2021T20

YE2C2024 10

	Угле	родистые с	тали	Легирован	ные стали		егирован. али	Конструк ста		Инструме ста	нтальные али	Нерж. стали	Чуг	уны	Al	Медные сплавы
	<24HRC (<hb250)< td=""><td></td><td>>28HRC (>HB275)</td><td></td><td>>28HRC (>HB275)</td><td><37HRC (<hb275)< td=""><td></td><td></td><td>>24HRC (>HB250)</td><td></td><td>>13HRC (>HB200)</td><td><28HRC (<hb275)< td=""><td><19HRC (<hb220)< td=""><td>>19HRC (>HB220)</td><td><8HRC (<hb180)< td=""><td><hb110< td=""></hb110<></td></hb180)<></td></hb220)<></td></hb275)<></td></hb275)<></td></hb250)<>		>28HRC (>HB275)		>28HRC (>HB275)	<37HRC (<hb275)< td=""><td></td><td></td><td>>24HRC (>HB250)</td><td></td><td>>13HRC (>HB200)</td><td><28HRC (<hb275)< td=""><td><19HRC (<hb220)< td=""><td>>19HRC (>HB220)</td><td><8HRC (<hb180)< td=""><td><hb110< td=""></hb110<></td></hb180)<></td></hb220)<></td></hb275)<></td></hb275)<>			>24HRC (>HB250)		>13HRC (>HB200)	<28HRC (<hb275)< td=""><td><19HRC (<hb220)< td=""><td>>19HRC (>HB220)</td><td><8HRC (<hb180)< td=""><td><hb110< td=""></hb110<></td></hb180)<></td></hb220)<></td></hb275)<>	<19HRC (<hb220)< td=""><td>>19HRC (>HB220)</td><td><8HRC (<hb180)< td=""><td><hb110< td=""></hb110<></td></hb180)<></td></hb220)<>	>19HRC (>HB220)	<8HRC (<hb180)< td=""><td><hb110< td=""></hb110<></td></hb180)<>	<hb110< td=""></hb110<>
Y1A	+	+	+	+	+	+	+	+	+	+	+	,	+	+	,	
Y2C	±	±		±				±		±		+			±	±



_	Обо	ЗН	ачение		_				25					
Диапазон диаметров, мм	TiAIN общего применен	ия	ТіСN обработка нерж. ста	лей	Диаметр пластин, h7, мм	Глубина сверления, мм	Корпус		SD, MM	L2, мм	FD, MM	L1, мм	L3, мм	Винт
						3D	ZH24003032	5				91	172	
	-	-	-	-	24	5D	-	-	32	60	37	140	221	8
04.00.05.0						7D	-	-				189	270	5T2
24,00-25,8						3D	ZH25003032	-				95	175	TX2425T20
	-	-	-	-	25	5D	ZH25005032	4	32	60	37	146	226	×
						7D	ZH25007032	1				197	277	
30,00-31,5	-	-	-	-	30	3D 5D 7D	ZH30003032 ZH30005032 ZH30007032	5 - 1	32	60	37	112 172 232	189 249 309	TX3031T25

	Угле	родистые с	тали	Легирован	ные стали		егирован. али	Конструк ста	ционные али		нтальные али	Нерж. стали	Чуг	уны	Al	Медные сплавы
	<24HRC	<28HRC	>28HRC	<28HRC	>28HRC	<37HRC	>37HRC	<24HRC	>24HRC	<13HRC	>13HRC	<28HRC	<19HRC	>19HRC	<8HRC	<hb110< td=""></hb110<>
	(<hb250)< td=""><td>(<hb275)< td=""><td>(>HB275)</td><td>(<hb275)< td=""><td>(>HB275)</td><td>(<hb275)< td=""><td>(>HB275)</td><td>(<hb250)< td=""><td>(>HB250)</td><td>(<hb200)< td=""><td>(>HB200)</td><td>(<hb275)< td=""><td>(<hb220)< td=""><td>(>HB220)</td><td>(<hb180)< td=""><td>\nb110</td></hb180)<></td></hb220)<></td></hb275)<></td></hb200)<></td></hb250)<></td></hb275)<></td></hb275)<></td></hb275)<></td></hb250)<>	(<hb275)< td=""><td>(>HB275)</td><td>(<hb275)< td=""><td>(>HB275)</td><td>(<hb275)< td=""><td>(>HB275)</td><td>(<hb250)< td=""><td>(>HB250)</td><td>(<hb200)< td=""><td>(>HB200)</td><td>(<hb275)< td=""><td>(<hb220)< td=""><td>(>HB220)</td><td>(<hb180)< td=""><td>\nb110</td></hb180)<></td></hb220)<></td></hb275)<></td></hb200)<></td></hb250)<></td></hb275)<></td></hb275)<></td></hb275)<>	(>HB275)	(<hb275)< td=""><td>(>HB275)</td><td>(<hb275)< td=""><td>(>HB275)</td><td>(<hb250)< td=""><td>(>HB250)</td><td>(<hb200)< td=""><td>(>HB200)</td><td>(<hb275)< td=""><td>(<hb220)< td=""><td>(>HB220)</td><td>(<hb180)< td=""><td>\nb110</td></hb180)<></td></hb220)<></td></hb275)<></td></hb200)<></td></hb250)<></td></hb275)<></td></hb275)<>	(>HB275)	(<hb275)< td=""><td>(>HB275)</td><td>(<hb250)< td=""><td>(>HB250)</td><td>(<hb200)< td=""><td>(>HB200)</td><td>(<hb275)< td=""><td>(<hb220)< td=""><td>(>HB220)</td><td>(<hb180)< td=""><td>\nb110</td></hb180)<></td></hb220)<></td></hb275)<></td></hb200)<></td></hb250)<></td></hb275)<>	(>HB275)	(<hb250)< td=""><td>(>HB250)</td><td>(<hb200)< td=""><td>(>HB200)</td><td>(<hb275)< td=""><td>(<hb220)< td=""><td>(>HB220)</td><td>(<hb180)< td=""><td>\nb110</td></hb180)<></td></hb220)<></td></hb275)<></td></hb200)<></td></hb250)<>	(>HB250)	(<hb200)< td=""><td>(>HB200)</td><td>(<hb275)< td=""><td>(<hb220)< td=""><td>(>HB220)</td><td>(<hb180)< td=""><td>\nb110</td></hb180)<></td></hb220)<></td></hb275)<></td></hb200)<>	(>HB200)	(<hb275)< td=""><td>(<hb220)< td=""><td>(>HB220)</td><td>(<hb180)< td=""><td>\nb110</td></hb180)<></td></hb220)<></td></hb275)<>	(<hb220)< td=""><td>(>HB220)</td><td>(<hb180)< td=""><td>\nb110</td></hb180)<></td></hb220)<>	(>HB220)	(<hb180)< td=""><td>\nb110</td></hb180)<>	\nb110
Y1A	+	+	+	+	+	+	+	+	+	+	+		+	+		
Y2C	±	±		±				±		±		+			±	±

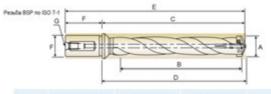
Хвостовик Weldon

✓ Экстракороткое исполнение с прямыми стружечными канавками

Резьба BSP по ISO 7-1

Серия	Обозначение		Диапазон диаметров D, мм	А, мм	В,	С,	Е,	d, мм	l, MM	G	н
0	Z00SBSF020M	1	13,0-17,5	22,2	47,6	50,4	97,6	20,0	50,0	1/8	1/8
Z	ZZ0EXHF020M	5	11,5-12,5	111.1	140.5	142.9	190.5	20.0	50.0	1/8	1/8

Хвостовик Weldon

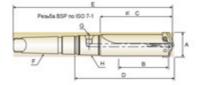

 Осободлинное исполнение с винтовыми стружечными канавками

Серия	Обозначение	Склад	Диапазон диаметров D, мм	А, мм	В,	C, MM	E, MM	d, MM	I, MM	G
Z	KSE115125182	5	11,5-12,5	111,1	140,5	142,9	182,4	20,0	41,9	1/8

Перовые сверла серии Spade drills

3

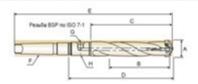
Особо длинное исполнение с винтовыми стружечными канавками (метрические).


Серия	Диапазон диаметров пластин, мм	Глубина сверления, мм	Длина режущей части, мм	Общая длина, мм	Диаметр хвостовика, мм	Резьба
1	18-24	269,9	307,2	360,3	25	G1/8
2	25-35	288,9	331,8	389,7	32	G1/4

	№ по каталогу	Неснижаемый остаток, шт	Стр. каталога YG-1 (2010- 2011)
ı	KSE180240360	1	277
	KSE250350390	-	211

Перовые сверла серии Spade drills

ı,


Хвостовик с конусом Морзе.
Короткое исполнение с прямыми стружечными канавками (метрические).

Серия	Диапазон диаметров пластин, мм	Глубина сверления, мм	Длина режущей части, мм	Общая длина, мм	Конус Морзе	Резьба
Y	9,5-11	31,7	51,5	160,3	2	G1/16
Z	11,5-12,5	31,7	51,5	160,3	2	G1/16
0	13-17,5	34,9	55,5	164,3	3	G1/16

№ по каталогу		ижа аток	емый , шт	Стр. каталога YG-1 (2010- 2011)			
KTA095110160		5		A STATE OF THE STA			
KTA115125160	5		268				
KTA130175164		7					

Перовые сверла серии Spade drills

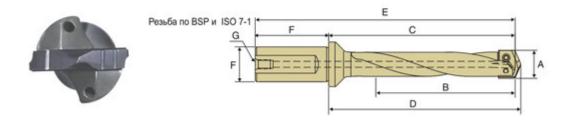
Хвостовик с конусом Морзе.
Удлиненное исполнение с винтовыми стружечными канавками (метрические).

Серия	Диапазон диаметров пластин, мм	Глубина сверления, мм	Длина режущей части, мм	Общая длина, мм	Конус Морзе	Резьба	№ по каталогу	Неснижаемый остаток, шт	Стр. каталога YG-1 (2010- 2011)
Z	11,5-12,5	60,3	80,2	188,9	2	G1/16	KTC115125188	2	
0	13-17,5	63,5	84,1	192,9	2	G1/16	KTC130175192	! 3	269
1	18-24	171,5	200	334,2	3	G1/8	KTC180240334	3	

Пластины из быстрорежущей стали PREMIUM HSS M48.

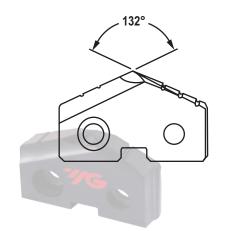
Основное назначение – обработка жаропрочных сплавов и материалов твердостью НВ 250-500.

Возможна замена пластины без снятия сверла со станка, что значительно сокращает время на замену инструмента



КОРПУСА С ЦИЛИНДРИЧЕСКИМ ФЛАНЦЕВЫМ ХВОСТОВИКОМ

СТАНДАРТНАЯ ДЛИНА -Винтовая стружечная канавка

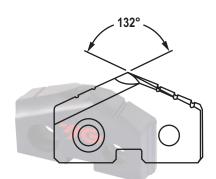

Серия	Артикул	Диапазон размеров пластин	Макс. глубина оверпения	Длина спирали	Вылет	Общая длина	Хвостовик		Don 6a
							Ø	Длина	Резьба
		A	В	С	D	E	F		G
4	Z40SDHF040M	3 48.0 ~ 65.0	231.8	281.0	285.8	351.0	40.0	70.0	1/4

Сменные пластины из быстрорежущей стали SUPER HSS T15 (Р12Ф5К5)

- ✓ Пластины из быстрорежущей стали для обработки сплавов на основе никеля и материалов твердостью более НВ 280
- ✓ Благодаря новой заточке SM-Point обеспечивается стабильность работы и снижаются силы резания
- ✓ Возможна замена пластины без снятия сверла, что значительно сокращает время на смену инструмента
- ✓ По запросу возможно изготовление пластин любого нестандартного размера

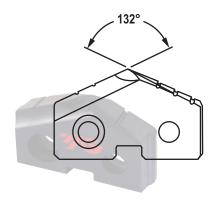
Обрабатываемые диаметры от 9,50 мм до 65,00 мм

Диапазон	Пиомото плоотии ми	Топиния	Стандартная заточка	
диаметров, мм	Диаметр пластин, мм	Толщина, мм	TiAIN	
Y	10,00	2.4	S1165100	20
9,50-11,00	11,00	2,4	S1165110	40
	13,00		S1165130	13
0	14,00	3,2	S1165140	40
	15,00	3,2	S1165150	12
13,00-17,50	17,00		S1165170	40
4	18,00		S1165180	5
1	20,00	4.0	S1165200	5
-	21,00	4,0	S1165210	12
18,00-24,00	22,00		S1165220	11


Угле	еродистые с	тали	Легирован	ные стали		егирован. али	Конструк ста	ционные эли	Инструме ста		Нерж. стали	Чугуны		Чугуны		Al	Медные сплавы
<24HRC (<hb250)< td=""><td><28HRC (<hb275)< td=""><td>>28HRC (>HB275)</td><td><28HRC (<hb275)< td=""><td>>28HRC (>HB275)</td><td><37HRC (<hb275)< td=""><td>>37HRC (>HB275)</td><td><24HRC (<hb250)< td=""><td>>24HRC (>HB250)</td><td><13HRC (<hb200)< td=""><td>>13HRC (>HB200)</td><td><28HRC (<hb275)< td=""><td><19HRC (<hb220)< td=""><td>>19HRC (>HB220)</td><td><8HRC (<hb180)< td=""><td><hb110< td=""></hb110<></td></hb180)<></td></hb220)<></td></hb275)<></td></hb200)<></td></hb250)<></td></hb275)<></td></hb275)<></td></hb275)<></td></hb250)<>	<28HRC (<hb275)< td=""><td>>28HRC (>HB275)</td><td><28HRC (<hb275)< td=""><td>>28HRC (>HB275)</td><td><37HRC (<hb275)< td=""><td>>37HRC (>HB275)</td><td><24HRC (<hb250)< td=""><td>>24HRC (>HB250)</td><td><13HRC (<hb200)< td=""><td>>13HRC (>HB200)</td><td><28HRC (<hb275)< td=""><td><19HRC (<hb220)< td=""><td>>19HRC (>HB220)</td><td><8HRC (<hb180)< td=""><td><hb110< td=""></hb110<></td></hb180)<></td></hb220)<></td></hb275)<></td></hb200)<></td></hb250)<></td></hb275)<></td></hb275)<></td></hb275)<>	>28HRC (>HB275)	<28HRC (<hb275)< td=""><td>>28HRC (>HB275)</td><td><37HRC (<hb275)< td=""><td>>37HRC (>HB275)</td><td><24HRC (<hb250)< td=""><td>>24HRC (>HB250)</td><td><13HRC (<hb200)< td=""><td>>13HRC (>HB200)</td><td><28HRC (<hb275)< td=""><td><19HRC (<hb220)< td=""><td>>19HRC (>HB220)</td><td><8HRC (<hb180)< td=""><td><hb110< td=""></hb110<></td></hb180)<></td></hb220)<></td></hb275)<></td></hb200)<></td></hb250)<></td></hb275)<></td></hb275)<>	>28HRC (>HB275)	<37HRC (<hb275)< td=""><td>>37HRC (>HB275)</td><td><24HRC (<hb250)< td=""><td>>24HRC (>HB250)</td><td><13HRC (<hb200)< td=""><td>>13HRC (>HB200)</td><td><28HRC (<hb275)< td=""><td><19HRC (<hb220)< td=""><td>>19HRC (>HB220)</td><td><8HRC (<hb180)< td=""><td><hb110< td=""></hb110<></td></hb180)<></td></hb220)<></td></hb275)<></td></hb200)<></td></hb250)<></td></hb275)<>	>37HRC (>HB275)	<24HRC (<hb250)< td=""><td>>24HRC (>HB250)</td><td><13HRC (<hb200)< td=""><td>>13HRC (>HB200)</td><td><28HRC (<hb275)< td=""><td><19HRC (<hb220)< td=""><td>>19HRC (>HB220)</td><td><8HRC (<hb180)< td=""><td><hb110< td=""></hb110<></td></hb180)<></td></hb220)<></td></hb275)<></td></hb200)<></td></hb250)<>	>24HRC (>HB250)	<13HRC (<hb200)< td=""><td>>13HRC (>HB200)</td><td><28HRC (<hb275)< td=""><td><19HRC (<hb220)< td=""><td>>19HRC (>HB220)</td><td><8HRC (<hb180)< td=""><td><hb110< td=""></hb110<></td></hb180)<></td></hb220)<></td></hb275)<></td></hb200)<>	>13HRC (>HB200)	<28HRC (<hb275)< td=""><td><19HRC (<hb220)< td=""><td>>19HRC (>HB220)</td><td><8HRC (<hb180)< td=""><td><hb110< td=""></hb110<></td></hb180)<></td></hb220)<></td></hb275)<>	<19HRC (<hb220)< td=""><td>>19HRC (>HB220)</td><td><8HRC (<hb180)< td=""><td><hb110< td=""></hb110<></td></hb180)<></td></hb220)<>	>19HRC (>HB220)	<8HRC (<hb180)< td=""><td><hb110< td=""></hb110<></td></hb180)<>	<hb110< td=""></hb110<>		
+	+	+	+	±	±	±	+	+	±	±	±	±	+	±	±		

Сменные пластины из быстрорежущей стали HSS M48 (Р6М5Ф3К9)

- ✓ Пластины из быстрорежущей стали для обработки жаропрочных сплавов и материалов твердостью НВ 350-500
- ✓ Благодаря новой заточке SM-Point обеспечивается стабильность работы и снижаются силы резания
- Возможна замена пластины без снятия сверла, что значительно сокращает время на смену инструмента
- ✓ По запросу возможно изготовление пластин любого нестандартного размера


Обрабатываемые диаметры от 9,50 мм до 35,00 мм

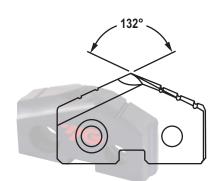
Диапазон диа-	Диаметр пластин,	T	Станд	ная заточка		
метров, мм	ММ	Толщина, мм	TiN		TiCN	
18,00-24,00	18,00	4,0	S1555180	15	-	-
2	25,00	4.0	S1555250	15	S1560250	15
25,00-35,00	32,00	4,8	S1555320	15	-	-

Угле	еродистые с	тали	Легирован	ные стали		егирован. али	Конструк ста	ционные эли	1.7	нтальные али	Нерж. стали	Чугуны		Al	Медные сплавы
<24HRC	<28HRC	>28HRC	<28HRC	>28HRC	<37HRC	>37HRC	<24HRC	>24HRC	<13HRC	>13HRC	<28HRC	<19HRC	>19HRC	<8HRC	<hb110< td=""></hb110<>
(<hb250)< td=""><td>(<hb275)< td=""><td>(>HB275)</td><td>(<hb275)< td=""><td>(>HB275)</td><td>(<hb275)< td=""><td>(>HB275)</td><td>(<hb250)< td=""><td>(>HB250)</td><td>(<hb200)< td=""><td>(>HB200)</td><td>(<hb275)< td=""><td>(<hb220)< td=""><td>(>HB220)</td><td>(<hb180)< td=""><td>\nb110</td></hb180)<></td></hb220)<></td></hb275)<></td></hb200)<></td></hb250)<></td></hb275)<></td></hb275)<></td></hb275)<></td></hb250)<>	(<hb275)< td=""><td>(>HB275)</td><td>(<hb275)< td=""><td>(>HB275)</td><td>(<hb275)< td=""><td>(>HB275)</td><td>(<hb250)< td=""><td>(>HB250)</td><td>(<hb200)< td=""><td>(>HB200)</td><td>(<hb275)< td=""><td>(<hb220)< td=""><td>(>HB220)</td><td>(<hb180)< td=""><td>\nb110</td></hb180)<></td></hb220)<></td></hb275)<></td></hb200)<></td></hb250)<></td></hb275)<></td></hb275)<></td></hb275)<>	(>HB275)	(<hb275)< td=""><td>(>HB275)</td><td>(<hb275)< td=""><td>(>HB275)</td><td>(<hb250)< td=""><td>(>HB250)</td><td>(<hb200)< td=""><td>(>HB200)</td><td>(<hb275)< td=""><td>(<hb220)< td=""><td>(>HB220)</td><td>(<hb180)< td=""><td>\nb110</td></hb180)<></td></hb220)<></td></hb275)<></td></hb200)<></td></hb250)<></td></hb275)<></td></hb275)<>	(>HB275)	(<hb275)< td=""><td>(>HB275)</td><td>(<hb250)< td=""><td>(>HB250)</td><td>(<hb200)< td=""><td>(>HB200)</td><td>(<hb275)< td=""><td>(<hb220)< td=""><td>(>HB220)</td><td>(<hb180)< td=""><td>\nb110</td></hb180)<></td></hb220)<></td></hb275)<></td></hb200)<></td></hb250)<></td></hb275)<>	(>HB275)	(<hb250)< td=""><td>(>HB250)</td><td>(<hb200)< td=""><td>(>HB200)</td><td>(<hb275)< td=""><td>(<hb220)< td=""><td>(>HB220)</td><td>(<hb180)< td=""><td>\nb110</td></hb180)<></td></hb220)<></td></hb275)<></td></hb200)<></td></hb250)<>	(>HB250)	(<hb200)< td=""><td>(>HB200)</td><td>(<hb275)< td=""><td>(<hb220)< td=""><td>(>HB220)</td><td>(<hb180)< td=""><td>\nb110</td></hb180)<></td></hb220)<></td></hb275)<></td></hb200)<>	(>HB200)	(<hb275)< td=""><td>(<hb220)< td=""><td>(>HB220)</td><td>(<hb180)< td=""><td>\nb110</td></hb180)<></td></hb220)<></td></hb275)<>	(<hb220)< td=""><td>(>HB220)</td><td>(<hb180)< td=""><td>\nb110</td></hb180)<></td></hb220)<>	(>HB220)	(<hb180)< td=""><td>\nb110</td></hb180)<>	\nb110
+	+	+	+	+	+	+	+	+	+	+	±	±	+	±	+

Сменные твердосплавные пластины, сплав К20

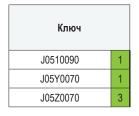
- ✓ Твердосплавные пластины для высокопроизводительной обработки чугуна твердостью до НВ 220, алюминия, меди, алюминиевых и медных сплавов
- ✓ Благодаря новой заточке SM-Point обеспечивается стабильность работы и снижаются силы резания
- ✓ Возможна замена пластины без снятия сверла, что значительно сокращает время на смену инструмента
- ✓ По запросу возможно изготовление пластин любого нестандартного размера

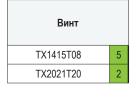
Обрабатываемые диаметры от 9,50 мм до 47,00 мм


Диапазон	Диаметр пластин,	Толщина, мм	Стандартная заточка	Заточка SM-Point
диаметров, мм	мм	голщина, мм	TiAIN	TIAIN
13,00-17,50	16,50	3,2		SM765165 1
18,00-24,00	20,00	4,0	S1765200	2

Сменные твердосплавные пластины, сплав Р40

- Универсальные твердосплавные пластины для обработки углеродистых и легированных сталей
- ✓ Благодаря новой заточке SM-Point обеспечивается стабильность работы и снижаются силы резания
- ✓ Возможна замена пластины без снятия сверла, что значительно сокращает время на смену инструмента
- ✓ По запросу возможно изготовление пластин любого нестандартного размера

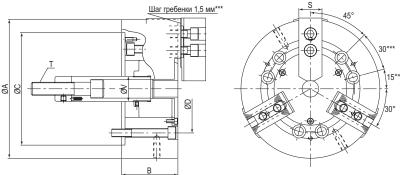



Обрабатываемые диаметры от 9,50 мм до 47,00 мм

Диапазон	Диаметр пластин,	Толщина,	Станд	артн	ая заточка		Зато	очка	SM-Point	
диаметров, мм	ММ	ММ	TiN	TiAIN	TiN		TiAIN			
1	18,00	4,0	S1855180	15	-	-	-	-	-	-
18,00-24,00	24,00	4,0	-		S1865240	10	SM855240	5	SM865240	5
2	28,00	4.0	S1855280	5	-	-	-	-	-	-
26,00-35,00	32,00	4,8	S1855320	15	-	-	-	-	-	-

Угле	еродистые с	тали	Легирован	ные стали		егирован. али	Конструк ста	ционные эли		нтальные али	Нерж. стали	Чугуны		Al	Медные сплавы
<24HRC (<hb250)< td=""><td><28HRC (<hb275)< td=""><td>>28HRC (>HB275)</td><td><28HRC (<hb275)< td=""><td>>28HRC (>HB275)</td><td><37HRC (<hb275)< td=""><td>>37HRC (>HB275)</td><td><24HRC (<hb250)< td=""><td>>24HRC (>HB250)</td><td><13HRC (<hb200)< td=""><td>>13HRC (>HB200)</td><td><28HRC (<hb275)< td=""><td><19HRC (<hb220)< td=""><td>>19HRC (>HB220)</td><td><8HRC (<hb180)< td=""><td><hb110< td=""></hb110<></td></hb180)<></td></hb220)<></td></hb275)<></td></hb200)<></td></hb250)<></td></hb275)<></td></hb275)<></td></hb275)<></td></hb250)<>	<28HRC (<hb275)< td=""><td>>28HRC (>HB275)</td><td><28HRC (<hb275)< td=""><td>>28HRC (>HB275)</td><td><37HRC (<hb275)< td=""><td>>37HRC (>HB275)</td><td><24HRC (<hb250)< td=""><td>>24HRC (>HB250)</td><td><13HRC (<hb200)< td=""><td>>13HRC (>HB200)</td><td><28HRC (<hb275)< td=""><td><19HRC (<hb220)< td=""><td>>19HRC (>HB220)</td><td><8HRC (<hb180)< td=""><td><hb110< td=""></hb110<></td></hb180)<></td></hb220)<></td></hb275)<></td></hb200)<></td></hb250)<></td></hb275)<></td></hb275)<></td></hb275)<>	>28HRC (>HB275)	<28HRC (<hb275)< td=""><td>>28HRC (>HB275)</td><td><37HRC (<hb275)< td=""><td>>37HRC (>HB275)</td><td><24HRC (<hb250)< td=""><td>>24HRC (>HB250)</td><td><13HRC (<hb200)< td=""><td>>13HRC (>HB200)</td><td><28HRC (<hb275)< td=""><td><19HRC (<hb220)< td=""><td>>19HRC (>HB220)</td><td><8HRC (<hb180)< td=""><td><hb110< td=""></hb110<></td></hb180)<></td></hb220)<></td></hb275)<></td></hb200)<></td></hb250)<></td></hb275)<></td></hb275)<>	>28HRC (>HB275)	<37HRC (<hb275)< td=""><td>>37HRC (>HB275)</td><td><24HRC (<hb250)< td=""><td>>24HRC (>HB250)</td><td><13HRC (<hb200)< td=""><td>>13HRC (>HB200)</td><td><28HRC (<hb275)< td=""><td><19HRC (<hb220)< td=""><td>>19HRC (>HB220)</td><td><8HRC (<hb180)< td=""><td><hb110< td=""></hb110<></td></hb180)<></td></hb220)<></td></hb275)<></td></hb200)<></td></hb250)<></td></hb275)<>	>37HRC (>HB275)	<24HRC (<hb250)< td=""><td>>24HRC (>HB250)</td><td><13HRC (<hb200)< td=""><td>>13HRC (>HB200)</td><td><28HRC (<hb275)< td=""><td><19HRC (<hb220)< td=""><td>>19HRC (>HB220)</td><td><8HRC (<hb180)< td=""><td><hb110< td=""></hb110<></td></hb180)<></td></hb220)<></td></hb275)<></td></hb200)<></td></hb250)<>	>24HRC (>HB250)	<13HRC (<hb200)< td=""><td>>13HRC (>HB200)</td><td><28HRC (<hb275)< td=""><td><19HRC (<hb220)< td=""><td>>19HRC (>HB220)</td><td><8HRC (<hb180)< td=""><td><hb110< td=""></hb110<></td></hb180)<></td></hb220)<></td></hb275)<></td></hb200)<>	>13HRC (>HB200)	<28HRC (<hb275)< td=""><td><19HRC (<hb220)< td=""><td>>19HRC (>HB220)</td><td><8HRC (<hb180)< td=""><td><hb110< td=""></hb110<></td></hb180)<></td></hb220)<></td></hb275)<>	<19HRC (<hb220)< td=""><td>>19HRC (>HB220)</td><td><8HRC (<hb180)< td=""><td><hb110< td=""></hb110<></td></hb180)<></td></hb220)<>	>19HRC (>HB220)	<8HRC (<hb180)< td=""><td><hb110< td=""></hb110<></td></hb180)<>	<hb110< td=""></hb110<>
+	+	+	+	+	+	+	+	+	+	+	±	±	±	±	±

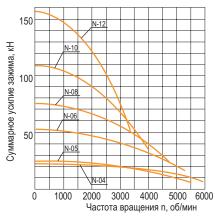
Крепежные винты и ключи

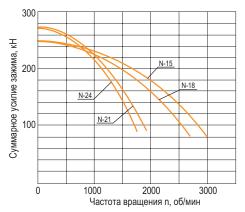


Серия N

Трёхкулачковые клиновые механизированные патроны общего назначения без сквозного отверстия.

05			Pa	змеры, мм	n max,	Bec,				
Обозначение		Α	V	Диапазон зажима	об/мин	КГ				
	Без переходного фланца									
N-05	1	135	28	16-135	5500	6,2				


Примечания:


- * для патронов N-21 и N-24: 0°.
- ** для патронов N-21 и N-24: 60°.
- *** для патронов N-21 и N-24: 3 мм.

Крепление патрона через переходной фланец по ГОСТ 24351 или DIN 6350.

Обозначение			Разм	еры, мм			Мах усилие	Цилиндр			
Ооозначение	В	C(H6)	D	S	T	Ход кулачков	зажима, кН (кгс)	гидро	пневмо		
	Без переходного фланца										
N-05	55	80	100	23	M12×1,75	6,4	25,2 (2570)	Y0715R	AY1315R		

Зависимость зажимного усилия от частоты вращения

В комплект входят: базовые кулачки, пазовые сухари, винты для крепления накладных кулачков,

винты для крепления патрона к шпинделю станка, ключи для всех винтов.

Патроны N-04 и N-05 комплектуются тремя крепёжными винтами. Остальные патроны имеют по 6 винтов. Возможна поставка переходника, тяги привода с нарезанной резьбой, если известны точные параметры резьбы тяги. В этом случае необходимо заполнить опросный лист на стр. Ж49. Комплектующие:

кулачки - стр. Ж-27, пазовые сухари - стр. Ж-27

Для заказа переходного фланца укажите типоразмер шпинделя и стандарт его исполнения.

Рабочие кулачки в базовую комплектацию не входят, заказываются отдельно

Серия N-А

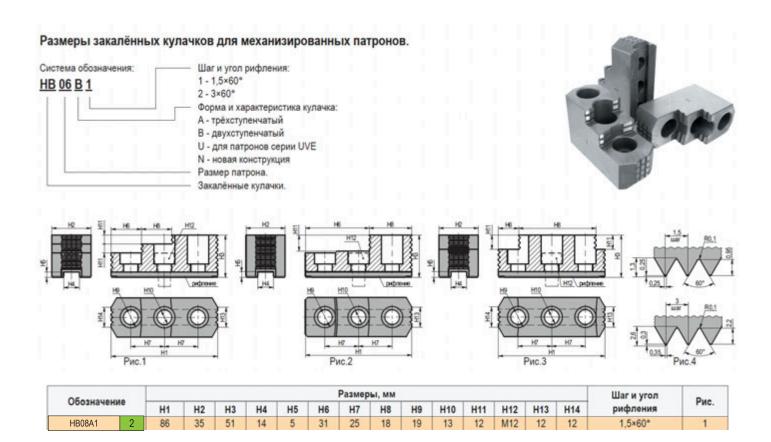
Трёхкулачковые клиновые механизированные патроны общего назначения без сквозного отверстия.

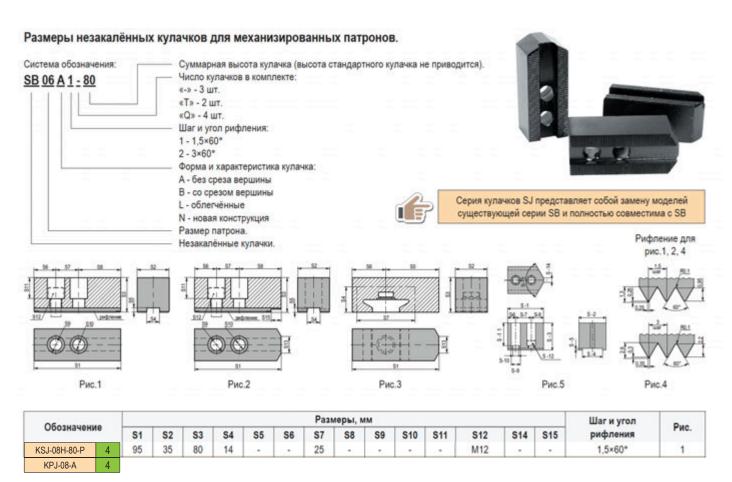
Ofeenenen			Pa	змеры, мм	n max,	Bec,					
Обозначение А V Диа		Диапазон зажима	об/мин	КГ							
	Без переходного фланца										
N-10A08	1	254	45	24-254	4010	40					

Кулачки базовые

Обозначение	
GB-B206 кулачки базовые	1
GB-B208 кулачки базовые	1
GB-B210 кулачки базовые	1
GB-B212 кулачки базовые	1

Кулачки сырые

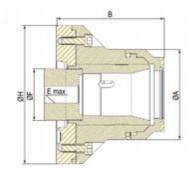

Обозначение	
KSJ12 кулачки сырые	15
KSJ12H кулачки сырые	9
SB10A1-116 кулачки сырые	3


Цанга шестигранная

Обозначение	
D185E X14 цанга шестигранная S=14 мм	1
D185E X17 цанга шестигранная S=17 мм	1
D185E X19 цанга шестигранная S=19 мм	1
D185E X22 цанга шестигранная S=22 мм	1
D185E X24 цанга шестигранная S=24 мм	1
D185E X27 цанга шестигранная S=27 мм	1
D185E X30 цанга шестигранная S=30 мм	1
D185E X32 цанга шестигранная S=32 мм	1
D185E X34 цанга шестигранная S=34 мм	1
D185E X36 цанга шестигранная S=36 мм	1
D185E X40 цанга шестигранная S=40 мм	1
D185E X41 цанга шестигранная S=41 мм	1
D185E X42 цанга шестигранная S=42 мм	1
D185E X45 цанга шестигранная S=45 мм	1
D185E X46 цанга шестигранная S=46 мм	1

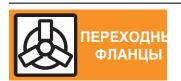
Цанга круглая

Обозначение	
D185E-R16 цанга круглая ф16 мм	1
D185E-R18 цанга круглая ф18 мм	1
D185E-R20 цанга круглая ф20 мм	1
D185E-R22 цанга круглая ф22 мм	1
D185E-R25 цанга круглая ф25 мм	1
D185E-R28 цанга круглая ф28 мм	1
D185E-R30 цанга круглая ф30 мм	1
D185E-R32 цанга круглая ф32 мм	1
D185E-R33 цанга круглая ф33 мм	1
D185E-R36 цанга круглая ф36 мм	1
D185E-R40 цанга круглая ф40 мм	1
D185E-R42 цанга круглая ф42 мм	1
D185E-R45 цанга круглая ф45 мм	1
D185E-R50 цанга круглая ф50 мм	1
D185E-R52 цанга круглая ф52 мм	1
D185E-R55 цанга круглая ф55 мм	1
D185E-R57 цанга круглая ф57 мм	1
D185E-R60 цанга круглая ф60 мм	1



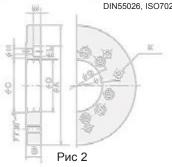
Cepuu QCRLS u QCRS

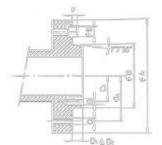
Быстросменные механизированные цанговые патроны.

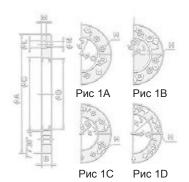

- Подходят для черновой и чистовой обработки.
- Идеально подходят для работы с автоматическим податчиком прутка.
- Фиксированное перемещение цанги.
- Быстросменный колпачок с защитной блокировкой.
- Высокая точность при обработке.

Обозначени				Pa	змери	ы, мм		Мах усилие		Цилиндр	Ца	нга	n max,	Bec,
Орозначени	•	Α	В	E max	тах F Н Диапазон зажима Конус зажим		зажима, кН (кгс)	цилиндр	черновая	чистовая	об/мин	KF		
QDCRL60A6	0	143	164,5	M75×2,0	82	-	4-60	A6	60 (6118)	S1552 S1875	D-677	D185E	6300	17

Патрон цанговый QD-CRL60A6 в комплекте с гайкой DR для станка Hwacheon Cutex 180 BLMC	1	
Патрон цанговый QD-CRL60A6 в комплекте с гайкой DR для станка Hwacheon Cutex 180B	1	


ПЛАНШАЙБЫ ASA B5.9 ТИП A (АНАЛОГ DIN 55026 И ISO 702/1)


Шпиндели


Модель	Конус	5					1	
	6	CB-06A05	10					
N	8	CN-08A05	(CB-08A06	1			
IN	10		(CN-10A06	1	CB-10A08	1	
	12							

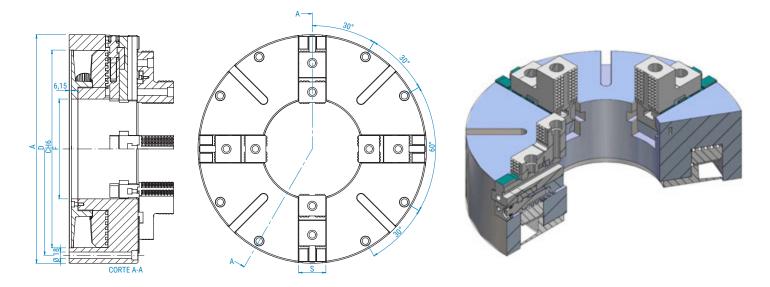
Непосредственное крепление на шпиндель согласно ГОСТ 24351 илисогласно ГОСТ 12595 тип K, DIN6350 DIN55026, ISO702/1

Размеры ASA B5.9 тип A (аналог DIN 55026), ГОСТ 12595 тип К

Тип	CB 06A05	CB 08A05	CB 08A06	CB 10A06	CB 10A08	CB 15A08	CB 15A11	CB 18A08	CB 18A11	CB 21A11	CB 21A15	CB 10A06
Размер конуса	A2-5	A2-5	A2-6	A2-6	A2-8	A2-8	A2-11	A2-8	A2-11	A2-11	A2-15	A2-6
А	140	170	170	220	220	300	300	380	380	380	380	200
В	15	22	17	25	18	33	22	33	22	41	27	20
С	82.557	82.557	106.377	106.377	139.722	139.722	196.870	139.722	196.870	196.870	285.750	106.377
D	79.7	79.7	103	103	136	140	192.1	140	192.1	192.1	252	103
E	16.28	16.28	19.46	19.46	24.21	24.21	29.36	24.21	29.36	29.36	35.71	19.46
F	6.5	6.5	6.5	6.5	8	8	10	8	10	10	10	6.5
G	104.78	104.78	133.35	133.35	171.45	171.45	235	171.45	235	235	330.2	133.35
Н	12	11	13.5	13.5	17	17	21	17	21	21	24	13.5
J	116	133.35	150	171.45	190	235	260	235	320	330.2	330.2	171.45
K	-	M12	-	M16	-	M20	-	M20	-	M22	-	M16
L	11	17	11	20	14	25	17	25	17	32	20	20
М	7	11	7	13.5	10	17	11	17	11	21	15	8
N	6.6	-	6.6	-	9	-	11	-	11	-	13.5	_
Рис.	1A	2	1B	2	1C	2	1C	2	1C	2	10	2

■ Концы шпинделей с укороченным конусом Тип А1 и А2 ASA B5.9 тип A, DIN 55026, ISO B702/1, BS 4442/1

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7												
Размер конуса		A2-5	A2-6	A2-8	A2-11	A2-15						
Наружный диаметр	Α	133	165	210	280	380						
Мах. диаметр конуса	В	82.563	106.375	139.719	196.869	285.775						
Р. С. R Наружные болты	C0	52.4	66.7	85.7	117.5	165.1						
Р. С. R Внутренние болты (только A1)	C1	30.95	41.30	55.55	82.55	123.8						
Высота центр. пояска (только А1)	D1	14.29	15.88	17.46	19.05	20.64						
Высота центр. пояска (только А2)	D2	13	14	16	18	19						
Диаметр установочного штифта	Е	15.90	19.05	23.80	28.60	34.90						
Высота установочного штифта	F	5	5	6	8	8						
Размер отверстия под болт	G	M10	M12	M16	M20	M22						

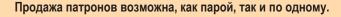


Патрон токарный 4-х кулачковый спирально-реечный самоцентрирующийся со сквозным отверстием. Ручной привод. Индивидуальная регулировка кулачков.

- ✓ Специальное исполнение с возможностью индивидуальной регулировки кулачков.
- ✓ Назначение; для закрепления труб и прочих длинномерных изделий, обрабатываемых на трубонарезных и специализированных станках. Возможно применение на универсальных токарных станках с ручным или программным управлением.
- ✓ Посадочное место патрона цилиндрический поясок. Крепление патрона через переходной фланец (в комплект не входит).

Обозначение				n max,	Вес, кг					
Обозначение		Α	В	CH6	D	F	S	Диапазон зажима	об/мин	Dec, Ki
135.630.250	2	630	185	545	586	250	75	150 - 500	970	305
135.630.275	2	630	185	545	586	275	75	150 - 500	970	290

Кулачки сборные.

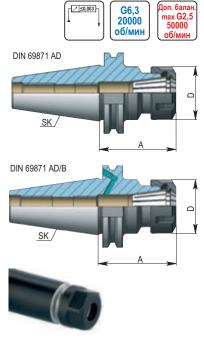

Корпус патрона изготовлен из стали

В комплект поставки входит; базовые кулачки со встроенным механизмом регулировки.

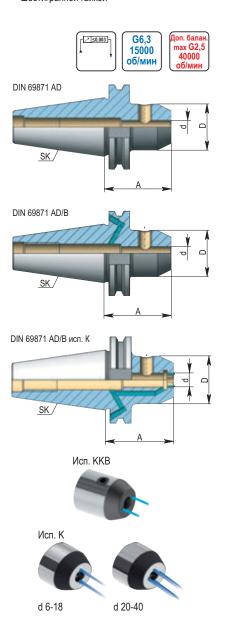
Комплект закаленных кулачков (4 шт.). Ключ затяжной, ключ для регулировки кулачков. Крепёжные элементы для закрепления кулачков.

Патроны б/у были в эксплуатации не более двух месяцев, при сдаче оборудования и отладке технологического процесса.

- В производстве не использовались.
- Не подошли заказчику из за не корректно составленного технического задания.
- Продаются с дисконтом в 60%
- Патроны 135.630.250 б/у, состояние нового, полный комплект.
- Патроны 135.630.275.б/у, состояние отличное, есть следы эксплуатации.



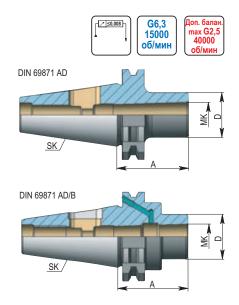
Патрон цанговый для цанг типа ER по DIN 6499.

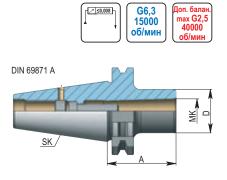

Обозначение					Pa	змеры, мм	
DIN 69871 AD	DIN 69871 AD DIN 69871 AD/B			SK.	Диапазон	Α	D
-	-	403.02.10.160	15	40	ER16 1-10	160	28

Патрон ER16 комплектуется шестигранной гайкой

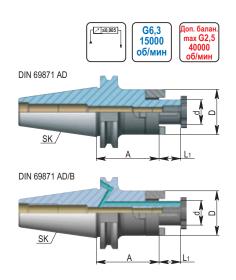
Оправка по DIN 6359 для инструмента с хвостовиком типа «Weldon» по DIN 1835В.

	Обозначение							Размеры, мм			
DIN 69871 AD		DIN 69871 AD/E	3	DIN 69871 AD/B (ис	SK	d	Α	D			
-	-	403.04.16.63	1	-	-	40	16	63	48		
402.04.20.63	3	-	-	-	-	40	20	63	52		
402.04.32.100	3	-	-	-	-	40	32	100	72		
-	-	403.04.25.100	1	-	-	40	25	100	63		




Втулка переходная для инструмента с хвостовиком конус Морзе (с лапкой) по DIN 6383.

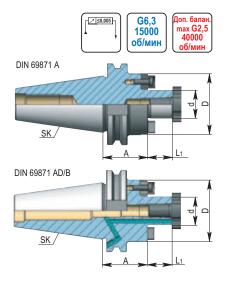
0	бозна	чение		SK	Размеры, мм				
DIN 69871 AD	DIN 69871 AD DIN 69871 AD/B		SN.	MK	Α	D			
502.07.02.117	16	-	-		2	117	32		
502.07.03.137	1	-	-	50	3	137	40		
502.07.04.167	7	-	-		4	167	48		


Втулка переходная для инструмента с хвостовиком конус Морзе (с винтом) по DIN 6364.

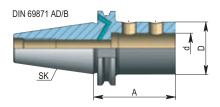
Обозначение		SK		Размеры, мм	
DIN 69871 A		on.	MK	Α	D
402.08.04A.110 *	6		4	110	63
502.08.04A.85 *	3		4	85	63
502.08.05.100	14		5	100	63

Оправка комбинированная для насадных торцовых и дисковых фрез.

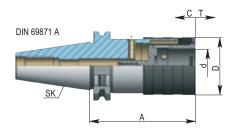
06	ачение	SK	Размеры, мм					
DIN 69871 AD		DIN 69871 AD/I	В	SK.	d	Α	L ₁	D
502.10.22.100	1	-	-	50	22	100	19	40
502.10.32.100	4	-	-	50	32	100	24	58
502.10.40.100	1	-	-	50	40	100	27	70

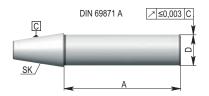


Оправка для насадных торцовых фрез по DIN 6357.

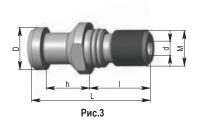

	06	означение		SK		Размеј	оы, мм	
DIN 69871 A		DIN 69871 AD/B	DIN 69871 AD/B			Α	L ₁	D
402.11.22.35	2			40	22	35	19	48
402.11.16.100	3	-	-	40	16	100	-	-

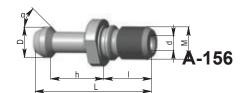
Оправка для свёрл с МНП.


Обозначение		SK		Размеры, мм				
DIN 69871 AD/B		SK	d	Α	D			
403.51.25.70	2	40	25	70	45			
403.51.32.75	40	32	75	52				


Патрон резьбонарезной с осевой компенсацией.

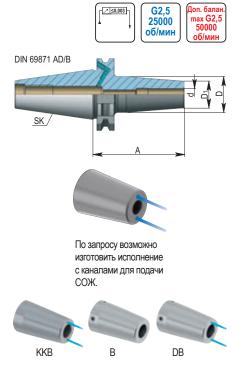
Обозначение)	CV	Размеры, мм							
DIN 69871 A		SK	Диапазон d A D C							
502.16.20.85	3	50	M5-M22	31	85	53,5	12	12		


Контрольная оправка.


Обозначение		CV.	Размеры, мм		
DIN 69871 A		on [A	D	
402.18.40.300	40	300	40		

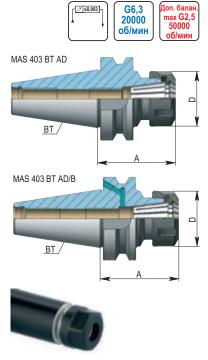
Штревели.

				Разме	ры, мм						
Обозначен	ие	D	М	ı	L	h	d	α	Уплотнение	Тип	Рис.
DIN 2080											
403.20.16	3	19	M16	28	54	20	-	-	есть	-	3
	JIS B 6339 (MAS 403 BT)										
406.20.45.1.IK	14	15	M16	25	57	25	3,5	45°	есть	HAAS	4

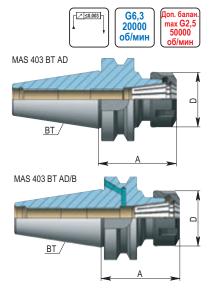


Патрон с термозажимом для закрепления инструмента из твёрдого сплава и быстрорежущих сталей.

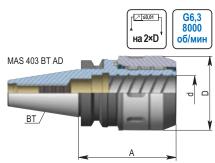
Обозначение		SK		Размеј	оы, мм	
DIN 69871 AD/B	SK.	d	Α	D ₁	D	
403.25.10.80	1	40	10	80	24	32
403.25.12.80	1	40	12	80	24	32



Патрон цанговый для цанг типа ER по DIN 6499.


	Обоз	начение		рт	Pa	змеры, мм	
MAS 403 BT A	D	MAS 403 BT AD/E	3	В	Диапазон	Α	D
-	-	406.02.16.160	2		ER25 2-16	160	42

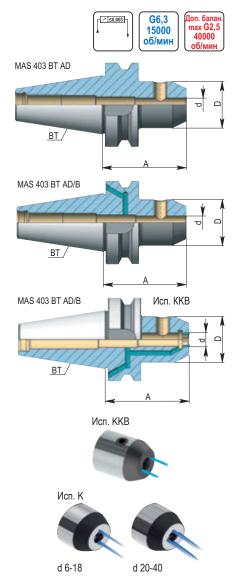
Патрон ER16 комплектуется шестигранной гайкой


Патрон цанговый для цанг типа ER по DIN 6499.

0	бозна	ачение	ВТ Размеры, мм						
MAS 403 BT A	D	MAS 403 BT AD	MAS 403 BT AD/B		T AD/B		Диапазон	Α	D
505.02.26.80	10	-	-	50	ER40 3-26	80	63		

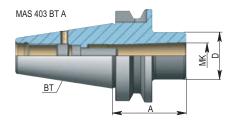
Патрон фрезерный силовой прецизионный.

Обозначение		ВТ	Размеры, мм					
Ооозначение	Ооозначение		Диапазон	d	Α	D		
505.03.32	4	50	**/G EKS 32-6-32	32	95	68		



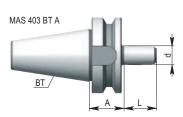
Оправка по DIN 6359 для инструмента с хвостовиком типа «Weldon» по DIN 1835В.

	Обозначение							Размеры, мм			
MAS 403 BT AI)	MAS 403 BT AD	MAS 403 BT AD/B MAS 403 BT AD/B (исп. К)				d	Α	D		
-	-	506.04.25.160	1	-	-	50	25	160	63		
505.04.32.105	2	-	-	-	-	50	32	105	72		

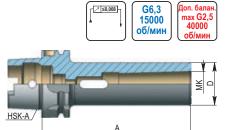


Втулка переходная для инструмента с хвостовиком конус Морзе (с винтом) по DIN 6364.

Обозначение		рт		Размеры, мм					
MAS 403 BT A		ы	MK	Α	D				
505.08.02.60	4	50	2	60	32				
505.08.04.70	50	4	70	48					



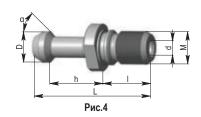
Патрон с укороченным конусом Морзе по DIN 238 (ГОСТ 9953-82) для сверлильных патронов.


Обозначение		DT	Размеры, мм				
MAS 403 BT A		ы	d	Α	L		
405.14.16.34	2	40	B16	34	24		

Втулка переходная для инструмента с хвостовиком конус Морзе (с лапкой) по DIN 6383.

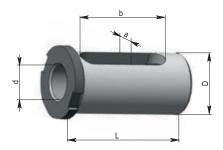
Обозначение		HSK-A	Размеры, мм				
DIN 69893-1 A		non-A	MK	Α	D		
A80.07.03.150 3		80	3	150	40		

А80.02.10-200 патрон цанговый HSK-A80 ER16 ф 1-10 A=200


Обозначение	
A80.02.10-200	1

Штревели.

Обозначение		Размеры, мм							V	Тип	Dua		
Обозначен	ие	D	М	- 1	L	h	d	α	Уплотнение	INU	Рис.		
	JIS B 6339 (MAS 403 BT)												
505.20.45	29	23	M24	40	85	35	-	45°	есть	-	4		


Вставки быстросменные для резьбонарезных патронов с предохранительной муфтой.

Обозначение			Размер	ры, мм		Диаметр	Размер	Стандарт				
Обозначение	,	D	d	L ₁	M	хвостовика	квадрата	метчика				
Нарезаемые резьбы М2-М14												
16.11.M14.1109 1		32	19	25	M14 11		9	DIN 376				
			На	арезаемь	іе резьбі	ы M5-M24						
16.12.M10.0755	1	50	31	31	M10	7	5,5	DIN 376				
16.12.M14.1109	2	50	31	31	M14	11	9	DIN 376				

Втулки переходные.

Обозначение				Размеры, мі	М		
Обозначение		d	D	L	а	b	L ₁
709.25.06.45	2	6	25	45	10,5	35	5
709.32.08.1.53	3						
709.32.10.1.53	3						
709.32.12.1.53	3						
709.32.20.1.53	5						
709.40.06.1.80	3						
709.40.08.1.80	3						
709.40.10.1.80	3						
709.40.12.1.80	3						
709.40.16.1.80	3						

Ключ роликовый для силовых фрезерных патронов с гладкой гайкой.

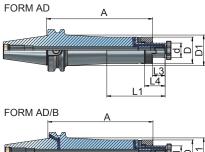
Обозначени	١٥	Размеры, мм					
Ооозначени	ie	Диапазон D					
03.32 N	2	EKS32 (16-32)	68				

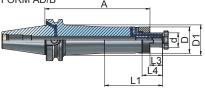
Kombi - Aufsteckfräserdorne

Combi shell mill holder

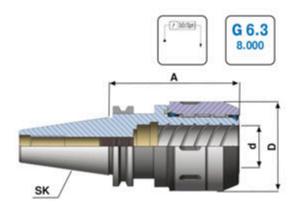

Porte-fraises á double usage pour fraises á entraînement par clavette ou tenon

Kombine malafa





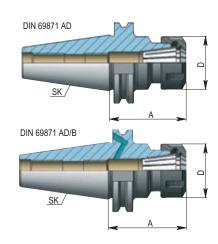
	Bestell-Nr.											
	Order Nr.											
	Reference											
	Sipariş Nr.	BT	Form	d	Α	D	D1	L1	L3	L4	Kg	Euro
2	406.10.27.160	BT 40	AD/B	27	160	48	55	88	21	33	2,97	

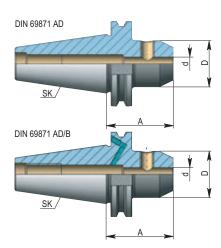

EKS Силовой прецизионный фрезерный патрон

DIN 69871 AD (ГОСТ 25827-93 исп. 2)

Форма AD

	Номер по каталогу	SK	Диапазон зажимаемых диаметров d, мм	d	A	D
5	402.03.20	40	EKS 20 6-20	20	90	48
1	402.03.32	40	EKS 32 6-32	32	100	68


9	502.03.32	50	EKS 32 6-32	32	95	68


Патрон цанговый для цанг типа ER по DIN 6499.

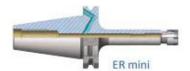
Обозначение			c v	Размеры, мм			
DIN 69871 A)		SI.	Диапазон	Α	D	
402.02.20.70	2			ER32 2-20	70	50	

Оправка по DIN 6359 для инструмента с хвостовиком типа «Weldon» по DIN 1835В.

	Обозначение					SK	Размеры, мм		
DIN 69871 AD)					3N	d	Α	D
402.04.12.50	2					40	12	50	42
402.04.16.63	4						16	63	48
402.04.25.100	2						25	100	63

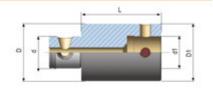
Патрон фрезерный силовой прецизионный. Комплект.

Обозначение MAS 403 BT AD	На складе	ВТ	Диапазон	Цанги в комплекте
405.63.20	4	40	EKS20 6-20	6-8-10-12-16
405.63.32	2	40	EKS32 6-32	6-8-10-12-16-20-25


В комплект входят: цанги EKS; ключ по DIN 1810A.

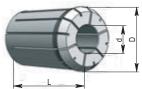
Патрон цанговый типа ER по DIN 6499 AD/B

Bestell-Nr		BT	Spannb ereich	A	Detail	
406.02.16.130	2	BT 40	ER25 (2 - 16)	130		

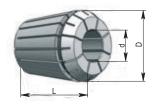


Расточные системы. Базовые держатели. Переходники. Удлинители.

Удлинители Размеры, мм Код d D d1 L • 63 36 63 75 63 36 63 135 36 772.36.80.100 3 80 80 100 36



Цанги по DIN 6388. Форма В.

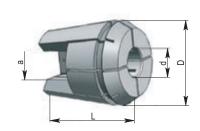


	_	-		A _	
			-	P	
1	- 1	1	7	77	
				Y	

House	Размеры, мм						
Цанга	D	L					
OZ16	25,5	40					
OZ25	35,05	52					
OZ32	43,7	60					

	Обозначени	ие		d,
OZ16	OZ25	OZ32		ММ
		467 E-03	1	

Цанги типа ER по DIN 6499.



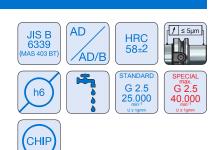
Цанга	Разме	ры, мм	Цанга	Разме	ры, мм	Цанга	Разме	ры, мм
цанга	D	L	цанга	D	L	цанга	D	L
ER8	8,5	13,6	ER20	21	31,5	ER40	41	46
ER11	11,5	18	ER25	26	34	-	-	-
ER16	17	27,5	ER32	33	40	-	-	-

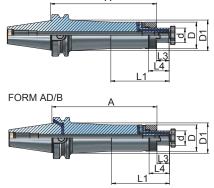
		Обозначение												d,
	ER8		ER11		ER16	i	ER20		ER25	ER32		ER40		ММ
ĺ	-	-	-	-	-	-	-	-		470 E-02 ◆	6			
										470 E-05 ◆	3			
										470 E-06 ◆	3			
										470 E-07 ◆	3			
										470 E-09 ◆	3			
										470 E-11 ◆	3			
										470 E-13 ◆	3			
										470 E-14 ◆	3			
										470 E-15 ♦	3			
												472 E-17	1	

Цанги типа ER по DIN 6499 с квадратным отверстием под хвостовик метчика.

				Обозначен	ие					d,	a,
ER16		ER20		ER25	ER25		ER32			ММ	ММ
-	-	-	-	-	-	ERGBD.20.0432	1	-	-	4	3,2
						ERGBD.20.0605	10				
	-	-	-	-	-	ERGBD.20.0756	4	-	-	7	5,6
ERGBD.10.0863	1	-	-	-	-	ERGBD.20.0863	10	-	-	8	6,3
						ERGBD.20.0971	10				
						ERGBD.20.1008	9				
						ERGBD.20.1109	10				
						ERGBD.20.1209	9				
-	-	-	-	-	-	ERGBD.20.14112	1	-	-	14	11,2
-	-	-	-	-	-	ERGBD.20.18145	2	-	-	18	14,5
-	-	-	-	-	-	ERGBD.20.2016	2	-	-	20	16
						ERGBD.20.4535	10				

Kombi - Aufsteckfräserdorne


Combi shell mill holder


Porte-fraises á double usage pour fraises á entraînement par clavette ou tenon

Kombine malafa

	Bestell-Nr.											
	Order Nr.											
	Reference											
	Sipariş Nr.	BT	Form	d	Α	D	D1	L1	L3	L4	Kg	Euro
		DT 40	4 D (D	0=	400	40		00	0.4	00	0.07	
2	406.10.27.160	BT 40	AD/B	27	160	48	55	88	21	33	2,97	

FORM AD

Spannzangen System ER DIN 6499 A mit Vierkantaufnahme ohne Längenausgleich

ER-GBD

Collet system ER DIN 6499 A with square locking drivengtheadjustment

Pinces System ER DIN 6499 avec carré d'entrainement, Forme A

Kılavuz pensi içten soğutmalı sistemler için keçeli ti**ß.45R AD IF**ormu

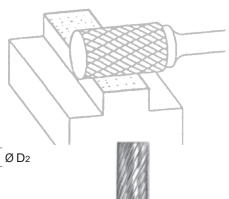
Bestell-Nr. Order Nr. Référence Sipariş Nr.	Ċ	annbereich Capacity Capacité Capasite	n d	D	U Vkt	L	Euro
ERGBD.20.16125	2	R32	16	32,7	12,5	40	

Цанга люнетная F853 / 166.001 / B212A Guide bush for swiss type lathes Special dimensions and sepcial profiles are also available! Please contact us! All guide bushes are available with a Raco-Morph coating. This coating reduces the coefficient of friction and thus ensures better smooth qualities and surface finish. Технические данные Технические характеристики Характеристика Единица Katalog Spannwerkzeuge 18,00 ød mm Опции переработки ØD 22,00 mm Опции переработки 59,00 mm 📜 Цены на опции переработки K 30,00 M16x1 G Макс. отверстие Ø 13,00 mm Макс. отверстие 6-kt 11,00 mm Макс, отверстие 4-kt 9,00 mm

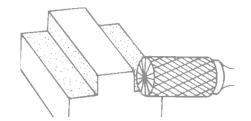
№ заказа	Наименование	внешний диаметр (мм)	Внешний диаметр (мм)	Длина L (мм)	Конус К (°)	Резьба М	Отверстие (мм)	Профиль	Опции переработки/ Ввод размеров	Кол-во
F853080V	Цанга люнетная F853 / 166.001 / В212A 8,0/квадра́т	18,00	22,00	59,00	30,00	M16x1	8,00	square	Опции переработки	В корзину
	F853 / 166.001 / B212A 8,0 2								Закажите несколько изде	лий с этой страниц продукты в корзину

Патрон расточной ф 10-140 SK40 Din 69871

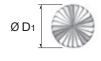
Обозначение		Цена дел	ения шкалы	Смещение	Диаметр отверстий
Ооозначение		Ø лимба	Ø нониуса	относительно оси	под резцы
Pumori B 325.4.40.120.130 1		0.01	0.005	+10 мм/-5мм	12 мм


В комплект входят две переходные втулки ф12-10 и ф12-8 мм

Цельнотвердосплавные борфрезы. Серия SA. Цилиндрические, тип SA (форма A)


Двойн	ная за	аточка	D1, мм	D2, мм	L1, мм	L2, мм	Сре	дни	й зуб
Обозначение		Артикул	DI, MM	DZ, MM	LI, MM	LZ, MM	Обозначение		Артикул
R1101001	1	SA-41M	1,5	3	6	38	-	-	-
R1101009	4	SA-43ML3	3	3	14	75	-	-	-
R1101012	8	SA-52M	4	3	12,7	38	-	-	-
-	-	-	8	6	19	63	R1201021	20	SA-3MP
R1101022	-	SA-3M	9,5	6	19	63	R1201022	4	SA-3MLP
-	-	-	12,7	6	25	69	R1201029	29	SA-6MP
R1101032	11	SA-6M	16	6	25	69	-	-	-
R1101034	14	SA-7M	19	6	25	69	-	·	-

Кру	/пный	і зуб	D4	D2	14	12
Обозначение		Артикул	D1, мм	D2, мм	L1, мм	L2, мм
R1301018	10	SA-1MNF	6	6	19	50
R1301024	10	SA-3MNF	9,5	6	19	63



Цельнотвердосплавные борфрезы. Серия SB. Цилиндрические с заточенным торцом, тип SB (форма B)

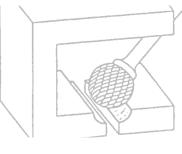
Двойн	ная з	аточка	D1, MM D2, MM	11	L2. мм	Средний зуб			
Обозначение		Артикул	DI, MM	DZ, MM	L1, мм	LZ, MM	Обозначение		Артикул
R1102004	3	SB-42M	2,5	3	11	38	-	-	-
R1102017	8	SB-3M	9,5	6	19	63	-	-	-
R1102022	9	SB-5M	12,7	6	25	69	-	-	-

Кру	пный	і зуб	D1, мм	D2, мм	11	12	
Обозначение		Артикул	DI, MM	DZ, MM	L1, мм	L2, мм	
R1302018	8	SB-1MNF	6	6	19	50	
R1302030	30	SB-5MNF	12,7	6	25	69	
R1302035	11	SB-7MNF	19	6	25	69	

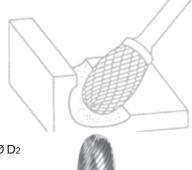
Цельнотвердосплавные борфрезы. Серия SC. Цилиндрические с радиусным концом, тип SC (форма C)

Двойн	ая з	аточка	D4	D2	14	12	Сре	дни	й зуб
Обозначение		Артикул	D1, мм	D2, мм	L1, мм	L2, мм	Обозначение		Артикул
R1103016	9	SC-2M	8	6	19	63	-	-	SC-2MP
-	-	-	9,5	6	19	63	R1203017	20	SC-3MP
R1103022	5	SC-4M	11	6	25	69	R1203022	30	SC-4MP
R1103024	34	SC-5M	12,7	6	25	69	R1203024	4	SC-5M
R1103027	3	SC-6M	16	6	25	69	-	-	-
R1103028	5	SC-7M	19	6	25	69	R1203028	-	SC-7MP

Круг	тный	і зуб	D4	D2	14	L2, мм	
Обозначение		Артикул	D1, мм	D2, мм	L1, мм		
R1303013	33	SC-1MNF	6	6	19	50	
R1303019	10	SC-3MNF	9,5	6	19	63	



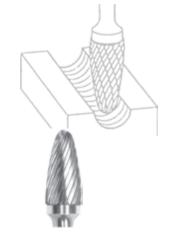
Цельнотвердосплавные борфрезы. Серия SD. Сферические, тип SD (форма D).



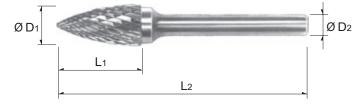
Двой	ная за	аточка	D4	D2	14	12	Средний зуб			
Обозначение		Артикул	D1, мм	D2, мм	L1, мм	L2, мм	Обозначение		Артикул	
R1104010	-	SD-1M	6	6	5	50	R1204010	8	SD-1MP	
R1104020	110	SD-5M	12,7	6	11	55	R1204020	20	SD-5MP	
R1104023	32	SD-6M	16	6	14	58	R1204023	11	SD-6MP	
R1104025	29	SD-7M	19	6	16	62	-	-	-	
R1104028	19	SD-9M	25	6	23	68	R1204028	5	SD-9MP	

Кр	упный	і зуб	D1	D2	11	12	
Обозначение		Артикул	D1, мм	D2, мм	L1, мм	L2, мм	
R1304011	15	SD-1MNF	6	6	8	50	

Цельнотвердосплавные борфрезы. Серия SE. Овальные, тип SE (форма E)

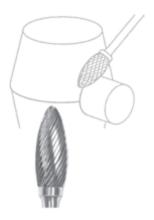

Двой	ная за	аточка	D4	D2	14	12	Ср	едни	й зуб
Обозначение		Артикул	D1, мм	D2, мм	L1, мм	L2, мм	Обозначение		Артикул
-	-	SE-1M	6	6	9,5	50	R1205005	4	SE-1MP
R1105008	74	SE-3M	9,5	6	16	60	-	-	-
R1105011	50	SE-5M	12,7	6	22	66	-	-	-
R1105014	5	SE-6M	16	6	25	69	-	-	-
-	-	SE-7M	19	6	25	69	-	-	-

Цельнотвердосплавные борфрезы. Серия SF. Гиперболические с радиусным концом, тип SF (форма F)

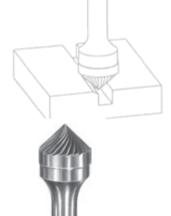

Кру	1ный	і зуб	D4	D2	14	12	
Обозначение		Артикул	D1, мм	D2, мм	L1, мм	L2, мм	
R1306009	3	SF-1MNF	6	6	19	50	
							1
							1

Цельнотвердосплавные борфрезы. Серия SG. Гиперболические с заостренным концом, тип SG (форма G)

Двойн	Двойная заточка		D1, мм	L1, мм	L2, мм	Средний зуб		
Обозначение		Артикул	DI, MM	DZ, MM	LI, MM	LZ, MM	Обозначение	Артикул
R1107009	20	SG-51M	6,3	3	12,7	50	-	
-	-	-	19	6	25	69	R1207019	SG-7MP



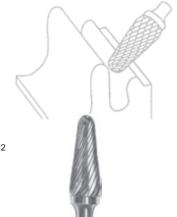
Цельнотвердосплавные борфрезы. Серия SH. Пламевидные (факел), тип SH (форма H)



Двойн	Двойная заточка		D1, мм	D2, мм	L1. мм	L2, мм	Средний зуб		
Обозначение		Артикул	DI, MM	DZ, MM	LI, MM	LZ, MM	Обозначение		Артикул
R1108005	14	SH-2M	8	6	19	63	R1208005	2	SH-2MP
R1108007	12	SH-5M	12,7	6	32	76	R1208007	4	SH-5MP

Цельнотвердосплавные борфрезы. Серия SK. Конические 90°, тип SK (форма K)


Двойная заточка			D1. мм	D2. мм	14	12	Средний зуб		
Обозначение		Артикул	DI, MM	DZ, MM	L1, MM	L2, MM	Обозначение	Артикул	
-	-	-	9,5	6	4,7	52	R1210003 4	SK-3MP	



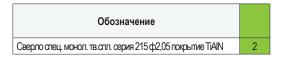
Цельнотвердосплавные борфрезы. Серия SL. Конические с радиусным торцом, тип SL (форма L)

Двойная заточка			D1. мм	D2	14	12		Средний зуб		
Обозначение		Артикул	UI, MM	D2, мм	L1, мм	L2, мм	a	Обозначение		Артикул
R1111008	32	SL-2M	8	6	22	69	14°	-	-	-
R1111009	9	SL-3M	9,5	6	27	74	14°	-	-	-
R1111012	33	SL-4M	12,7	6	28	76	14°	-	-	-
R1111015	10	SL-5M	16	6	30	77	14°	-	-	-
R1111017	22	SL-7M	19	6	38	85	14°	-	-	-

Двойная заточка			D1. мм D2.	D2. мм	. 14	12		Средний зуб		
Обозначение		Артикул	DI, MM	D2, мм	им L1, мм L2, м	L2, мм	a	Обозначение		Артикул
R1112009	16	SM-3M	6	6	25	50	10°	-	-	-
R1112012	5	SM-5M	12,7	6	22	69	28°	-	-	-

Твердосплавные борфрезы Хвостовик 3 мм; общая длина 38 мм

С двойной заточкой	№ по каталогу	SCT	1 d ₁	Длина канавки ¹ 2
M	806-7500-60	17 SE-7	19	25



Твердосплавные борфрезы Хвостовик 3 мм; общая длина 38 мм

Сверло спец. монол. тв.спл. серия 215 ф2,05 покрытие TiAIN

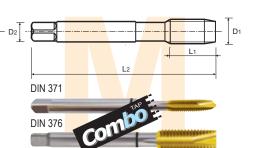
Сверло специальное по черт. 03060986 РТ

Cepuu TC814, TD814

Spiral point taps

Универсального применения

Запатентованная YG-1 геометрия режущей части обеспечивает более высокую стойкость инструмента за счет нарезания резьбы по профильно-генераторной схеме

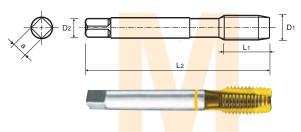


(Обозначение						L2,	D2,	a,	
Без покрь	пия	TiN			ММ	ММ				D1, мм
-	-	TD814746	2	M22	2,5	32	140	18	14,5	18,5

Cepuu TC227, TD227

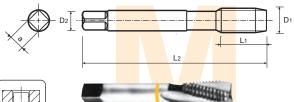
Spiral point taps

Легкообрабатываемые стали с прочностью менее 850 Н/мм2


DIN 376

0	бозн	ачение		M	P,	L1,	L2,	D2,	a,	
Без покры								D1, мм		
TC227366	65	TD227366	400	M8	1,25	20	90	6	4,9	6,8
		TD227606	49	M16	2	27	110	12	9	14

Углеродис	стые стали	Легирован	ные стали	Нержавею	щие стали	Чуг	уны	Ті и сг	плавы	Ni и сг	плавы	Си и сплавы		Al и сплавы	
<400	<700	<850	<1200	Легкообр.	Аустенитные	Серый чугун	Ковкий чугун	<700	<900	<500	<900	Дл. стружка	Si<0,5%	Si<10%	Si>10%
H/mm²	Н/мм²	H/mm²	Н/мм²	<850 H/mm ²	<850 Н/мм²	<1000 H/mm²	<1000 H/mm²	H/mm²	H/mm ²	H/mm²	H/mm²	<700 H/mm ²	<500 H/mm ²	<400 H/mm ²	<400 H/mm ²
(<hb120)< td=""><td>(<hb200)< td=""><td>(<hb250)< td=""><td>(<hb350)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb350)<></td></hb250)<></td></hb200)<></td></hb120)<>	(<hb200)< td=""><td>(<hb250)< td=""><td>(<hb350)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb350)<></td></hb250)<></td></hb200)<>	(<hb250)< td=""><td>(<hb350)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb350)<></td></hb250)<>	(<hb350)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb350)<>	(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb300)<></td></hb250)<></td></hb250)<>	(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb300)<></td></hb250)<>	(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb300)<>	(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb300)<>	(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<>	(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<></td></hb270)<></td></hb150)<></td></hb270)<>	(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<></td></hb270)<></td></hb150)<>	(<hb270)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<></td></hb270)<>	(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<>	(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<>	(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<>	(<hb120)< td=""></hb120)<>
	+	+					+	±		±		+	±	±	+



Серия ТС612

Spiral flute taps

Легкообрабатываемые стали с прочностью менее 850 H/мм². Короткая серия. Неглубокие отверстия.

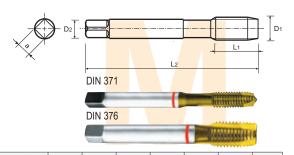
DIN 352

	Углеродис	тые стали	Легирован	іные стали	Нержавею	щие стали	Чуг	уны	Ті и сг	плавы	Ni и сг	плавы	Си и сплавы		Al и сплавы	
ſ	<400	<700	<850	<1200	Легкообр.	Аустенитные	Серый чугун	Ковкий чугун	<700	<900	<500	<900	Дл. стружка	Si<0,5%	Si<10%	Si>10%
	H/mm ²	H/mm²	H/mm²	Н/мм²	<850 H/mm ²	<850 H/мм²	<1000 H/mm²	<1000 H/mm²	H/mm ²	H/mm ²	H/mm ²	H/mm ²	<700 H/mm ²	<500 H/mm ²	<400 H/mm ²	<400 H/mm ²
	(<hb120)< td=""><td>(<hb200)< td=""><td>(<hb250)< td=""><td>(<hb350)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb350)<></td></hb250)<></td></hb200)<></td></hb120)<>	(<hb200)< td=""><td>(<hb250)< td=""><td>(<hb350)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb350)<></td></hb250)<></td></hb200)<>	(<hb250)< td=""><td>(<hb350)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb350)<></td></hb250)<>	(<hb350)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb350)<>	(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb300)<></td></hb250)<></td></hb250)<>	(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb300)<></td></hb250)<>	(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb300)<>	(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb300)<>	(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<>	(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<></td></hb270)<></td></hb150)<></td></hb270)<>	(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<></td></hb270)<></td></hb150)<>	(<hb270)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<></td></hb270)<>	(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb200)<>	(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<>	(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<>	(<hb120)< td=""></hb120)<>
		+	+					+	±		±		+	±	±	+

Cepuu TY422

Spiral point taps

Жаростойкие и высокопрочные стали с прочностью 850 - 1200 H/мм²


DIN 371/376

Обозначение		M	P,	L1,	L2,	D2,	a,	
TiAIN							D1, мм	
TY422176	2	M2,5	0,45	9	50	2,8	2,1	2,05

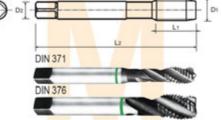
Обозначение		М	Р,	L1,	L2,	D2,	а,	
TiAIN							D1, мм	
TY422426	12	M10	1,5	22	100	10	8	8,5
TY422706 3		M20	2,5	32	140	16	12	17,5

Углеродистые стали	Леги	рованные с	тали	Нержавею	щие стали	Чуг	уны	Ті и сг	плавы	Ni и сг	плавы	Сиис	плавы	Al и с	плавы
<850 H/мм² (<hb250)< th=""><th><850 H/мм² (<hb250)< th=""><th><1200 Н/мм² (<hb350)< th=""><th>>1200 H/мм² (>HB350)</th><th>Аустенитные <850 Н/мм² (<hb250)< th=""><th><1100 Н/мм² (<НВ300)</th><th>Серый чугун <500 H/мм² (<hb150)< th=""><th> ' ' ' '</th><th><700 Н/мм² (<НВ200)</th><th><900 Н/мм² (<НВ270)</th><th><500 Н/мм² (<НВ150)</th><th><900 Н/мм² (<hb270)< th=""><th><350 Н/мм² (<НВ100)</th><th>Дл. стружка <700 Н/мм² (<НВ200)</th><th><350 Н/мм² (<НВ100)</th><th>Si<10% <400 H/мм² (<hb120)< th=""></hb120)<></th></hb270)<></th></hb150)<></th></hb250)<></th></hb350)<></th></hb250)<></th></hb250)<>	<850 H/мм² (<hb250)< th=""><th><1200 Н/мм² (<hb350)< th=""><th>>1200 H/мм² (>HB350)</th><th>Аустенитные <850 Н/мм² (<hb250)< th=""><th><1100 Н/мм² (<НВ300)</th><th>Серый чугун <500 H/мм² (<hb150)< th=""><th> ' ' ' '</th><th><700 Н/мм² (<НВ200)</th><th><900 Н/мм² (<НВ270)</th><th><500 Н/мм² (<НВ150)</th><th><900 Н/мм² (<hb270)< th=""><th><350 Н/мм² (<НВ100)</th><th>Дл. стружка <700 Н/мм² (<НВ200)</th><th><350 Н/мм² (<НВ100)</th><th>Si<10% <400 H/мм² (<hb120)< th=""></hb120)<></th></hb270)<></th></hb150)<></th></hb250)<></th></hb350)<></th></hb250)<>	<1200 Н/мм² (<hb350)< th=""><th>>1200 H/мм² (>HB350)</th><th>Аустенитные <850 Н/мм² (<hb250)< th=""><th><1100 Н/мм² (<НВ300)</th><th>Серый чугун <500 H/мм² (<hb150)< th=""><th> ' ' ' '</th><th><700 Н/мм² (<НВ200)</th><th><900 Н/мм² (<НВ270)</th><th><500 Н/мм² (<НВ150)</th><th><900 Н/мм² (<hb270)< th=""><th><350 Н/мм² (<НВ100)</th><th>Дл. стружка <700 Н/мм² (<НВ200)</th><th><350 Н/мм² (<НВ100)</th><th>Si<10% <400 H/мм² (<hb120)< th=""></hb120)<></th></hb270)<></th></hb150)<></th></hb250)<></th></hb350)<>	>1200 H/мм² (>HB350)	Аустенитные <850 Н/мм² (<hb250)< th=""><th><1100 Н/мм² (<НВ300)</th><th>Серый чугун <500 H/мм² (<hb150)< th=""><th> ' ' ' '</th><th><700 Н/мм² (<НВ200)</th><th><900 Н/мм² (<НВ270)</th><th><500 Н/мм² (<НВ150)</th><th><900 Н/мм² (<hb270)< th=""><th><350 Н/мм² (<НВ100)</th><th>Дл. стружка <700 Н/мм² (<НВ200)</th><th><350 Н/мм² (<НВ100)</th><th>Si<10% <400 H/мм² (<hb120)< th=""></hb120)<></th></hb270)<></th></hb150)<></th></hb250)<>	<1100 Н/мм² (<НВ300)	Серый чугун <500 H/мм² (<hb150)< th=""><th> ' ' ' '</th><th><700 Н/мм² (<НВ200)</th><th><900 Н/мм² (<НВ270)</th><th><500 Н/мм² (<НВ150)</th><th><900 Н/мм² (<hb270)< th=""><th><350 Н/мм² (<НВ100)</th><th>Дл. стружка <700 Н/мм² (<НВ200)</th><th><350 Н/мм² (<НВ100)</th><th>Si<10% <400 H/мм² (<hb120)< th=""></hb120)<></th></hb270)<></th></hb150)<>	' ' ' '	<700 Н/мм² (<НВ200)	<900 Н/мм² (<НВ270)	<500 Н/мм² (<НВ150)	<900 Н/мм² (<hb270)< th=""><th><350 Н/мм² (<НВ100)</th><th>Дл. стружка <700 Н/мм² (<НВ200)</th><th><350 Н/мм² (<НВ100)</th><th>Si<10% <400 H/мм² (<hb120)< th=""></hb120)<></th></hb270)<>	<350 Н/мм² (<НВ100)	Дл. стружка <700 Н/мм² (<НВ200)	<350 Н/мм² (<НВ100)	Si<10% <400 H/мм² (<hb120)< th=""></hb120)<>
	±	+			±				±		±				

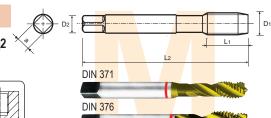
Cepuu TR813, TQ813

Spiral flute taps

Нержавеющие стали



Обозн	Обозначение					L2,	D2,	a, MM	4
Без покрытия	Vap	Vap		77.00					D1, MM
	TQ813366	56	M8	1,25	13	90	8	6,2	6,8



Cepuu TD312, TY312

Spiral flute taps

Жаростойкие и высокопрочные стали с прочностью 850 - 1200 Н/мм2

Обозн	Обозначение					L2,	D2,	а,	
TiN	TiAIN								D1, мм
-	TY312136	20	M2	0,4	8	45	2,8	2,1	1,6
	TY312286	10	M5	0,8	8	70	6	4,9	4,2
	TY312706	3	M20	2,5	25	140	16	12	17,5

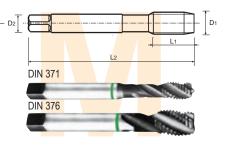
Углеродистые стали	Леги	Легированные стали нержавеющие стал		щие стали	Чуг	уны	Ті и сг	плавы	Ni и сг	плавы	Сиис	плавы	Alиc	плавы	
<850 H/мм² (<hb250)< th=""><th><850 Н/мм² (<hb250)< th=""><th><1200 Н/мм² (<НВ350)</th><th>>1200 H/мм² (>HB350)</th><th>Аустенитные <850 Н/мм² (<hb250)< th=""><th></th><th>Серый чугун <500 Н/мм² (<НВ150)</th><th></th><th><700 Н/мм² (<НВ200)</th><th><900 Н/мм² (<НВ270)</th><th><500 Н/мм² (<НВ150)</th><th><900 Н/мм² (<hb270)< th=""><th><350 H/mm² (<hb100)< th=""><th>Дл. стружка <700 Н/мм² (<НВ200)</th><th>Н/мм²</th><th>Si<10% <400 H/mm² (<hb120)< th=""></hb120)<></th></hb100)<></th></hb270)<></th></hb250)<></th></hb250)<></th></hb250)<>	<850 Н/мм² (<hb250)< th=""><th><1200 Н/мм² (<НВ350)</th><th>>1200 H/мм² (>HB350)</th><th>Аустенитные <850 Н/мм² (<hb250)< th=""><th></th><th>Серый чугун <500 Н/мм² (<НВ150)</th><th></th><th><700 Н/мм² (<НВ200)</th><th><900 Н/мм² (<НВ270)</th><th><500 Н/мм² (<НВ150)</th><th><900 Н/мм² (<hb270)< th=""><th><350 H/mm² (<hb100)< th=""><th>Дл. стружка <700 Н/мм² (<НВ200)</th><th>Н/мм²</th><th>Si<10% <400 H/mm² (<hb120)< th=""></hb120)<></th></hb100)<></th></hb270)<></th></hb250)<></th></hb250)<>	<1200 Н/мм² (<НВ350)	>1200 H/мм² (>HB350)	Аустенитные <850 Н/мм² (<hb250)< th=""><th></th><th>Серый чугун <500 Н/мм² (<НВ150)</th><th></th><th><700 Н/мм² (<НВ200)</th><th><900 Н/мм² (<НВ270)</th><th><500 Н/мм² (<НВ150)</th><th><900 Н/мм² (<hb270)< th=""><th><350 H/mm² (<hb100)< th=""><th>Дл. стружка <700 Н/мм² (<НВ200)</th><th>Н/мм²</th><th>Si<10% <400 H/mm² (<hb120)< th=""></hb120)<></th></hb100)<></th></hb270)<></th></hb250)<>		Серый чугун <500 Н/мм² (<НВ150)		<700 Н/мм² (<НВ200)	<900 Н/мм² (<НВ270)	<500 Н/мм² (<НВ150)	<900 Н/мм² (<hb270)< th=""><th><350 H/mm² (<hb100)< th=""><th>Дл. стружка <700 Н/мм² (<НВ200)</th><th>Н/мм²</th><th>Si<10% <400 H/mm² (<hb120)< th=""></hb120)<></th></hb100)<></th></hb270)<>	<350 H/mm² (<hb100)< th=""><th>Дл. стружка <700 Н/мм² (<НВ200)</th><th>Н/мм²</th><th>Si<10% <400 H/mm² (<hb120)< th=""></hb120)<></th></hb100)<>	Дл. стружка <700 Н/мм² (<НВ200)	Н/мм²	Si<10% <400 H/mm² (<hb120)< th=""></hb120)<>
	±	+			±				±		±				

Cepuu TR813, TQ813

Spiral flute taps

Нержавеющие стали

DIN 371/376



06	бозн	ачение		M	P,	L1,	L2,	D2,	a,	
Без покры	Без покрытия Vap									D1, мм
TR813346	14	-	-	M7	1	10	80	7	5,5	6
TR813366	16	TQ813366	66	M8	1,25	13	90	8	6,2	6,8

	Обозначение Без покрытия Vap					L1, мм	L2, мм	D2, мм	а, мм	D1, MM
TR813426	7	- vap	-	M10	1,5	15	100	10	8	8,5
TR813506	12	-	-	M12	1,75	18	110	9	7	10,2

Угле	еродистые с	тали	Нер	Нержавеющие стали			уны	Ті и сг	плавы	Ni и сı	плавы	Сиис	плавы	Al и сı	плавы
<400	<700	<850	Легкообр.	Аустенитные	<1100	Серый чугун	Ковкий чугун	<700	<900	<500	<900	<350	Кор. стружка	<350	Si<0,5%
H/mm²	H/mm²	H/mm²	<850 H/mm²	<850 H/mm ²	H/mm²	<500 H/mm²	<700 H/mm ²	H/mm²	Н/мм²	Н/мм²	H/mm²	H/mm²	<700 H/мм²	H/mm ²	<500 H/mm ²
(<hb120)< th=""><th>(<hb200)< th=""><th>(<hb250)< th=""><th>(<hb250)< th=""><th>(<hb250)< th=""><th>(<hb300)< th=""><th>(<hb150)< th=""><th>(<hb200)< th=""><th>(<hb200)< th=""><th>(<hb270)< th=""><th>(<hb150)< th=""><th>(<hb270)< th=""><th>(<hb100)< th=""><th>(<hb200)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""></hb150)<></th></hb100)<></th></hb200)<></th></hb100)<></th></hb270)<></th></hb150)<></th></hb270)<></th></hb200)<></th></hb200)<></th></hb150)<></th></hb300)<></th></hb250)<></th></hb250)<></th></hb250)<></th></hb200)<></th></hb120)<>	(<hb200)< th=""><th>(<hb250)< th=""><th>(<hb250)< th=""><th>(<hb250)< th=""><th>(<hb300)< th=""><th>(<hb150)< th=""><th>(<hb200)< th=""><th>(<hb200)< th=""><th>(<hb270)< th=""><th>(<hb150)< th=""><th>(<hb270)< th=""><th>(<hb100)< th=""><th>(<hb200)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""></hb150)<></th></hb100)<></th></hb200)<></th></hb100)<></th></hb270)<></th></hb150)<></th></hb270)<></th></hb200)<></th></hb200)<></th></hb150)<></th></hb300)<></th></hb250)<></th></hb250)<></th></hb250)<></th></hb200)<>	(<hb250)< th=""><th>(<hb250)< th=""><th>(<hb250)< th=""><th>(<hb300)< th=""><th>(<hb150)< th=""><th>(<hb200)< th=""><th>(<hb200)< th=""><th>(<hb270)< th=""><th>(<hb150)< th=""><th>(<hb270)< th=""><th>(<hb100)< th=""><th>(<hb200)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""></hb150)<></th></hb100)<></th></hb200)<></th></hb100)<></th></hb270)<></th></hb150)<></th></hb270)<></th></hb200)<></th></hb200)<></th></hb150)<></th></hb300)<></th></hb250)<></th></hb250)<></th></hb250)<>	(<hb250)< th=""><th>(<hb250)< th=""><th>(<hb300)< th=""><th>(<hb150)< th=""><th>(<hb200)< th=""><th>(<hb200)< th=""><th>(<hb270)< th=""><th>(<hb150)< th=""><th>(<hb270)< th=""><th>(<hb100)< th=""><th>(<hb200)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""></hb150)<></th></hb100)<></th></hb200)<></th></hb100)<></th></hb270)<></th></hb150)<></th></hb270)<></th></hb200)<></th></hb200)<></th></hb150)<></th></hb300)<></th></hb250)<></th></hb250)<>	(<hb250)< th=""><th>(<hb300)< th=""><th>(<hb150)< th=""><th>(<hb200)< th=""><th>(<hb200)< th=""><th>(<hb270)< th=""><th>(<hb150)< th=""><th>(<hb270)< th=""><th>(<hb100)< th=""><th>(<hb200)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""></hb150)<></th></hb100)<></th></hb200)<></th></hb100)<></th></hb270)<></th></hb150)<></th></hb270)<></th></hb200)<></th></hb200)<></th></hb150)<></th></hb300)<></th></hb250)<>	(<hb300)< th=""><th>(<hb150)< th=""><th>(<hb200)< th=""><th>(<hb200)< th=""><th>(<hb270)< th=""><th>(<hb150)< th=""><th>(<hb270)< th=""><th>(<hb100)< th=""><th>(<hb200)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""></hb150)<></th></hb100)<></th></hb200)<></th></hb100)<></th></hb270)<></th></hb150)<></th></hb270)<></th></hb200)<></th></hb200)<></th></hb150)<></th></hb300)<>	(<hb150)< th=""><th>(<hb200)< th=""><th>(<hb200)< th=""><th>(<hb270)< th=""><th>(<hb150)< th=""><th>(<hb270)< th=""><th>(<hb100)< th=""><th>(<hb200)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""></hb150)<></th></hb100)<></th></hb200)<></th></hb100)<></th></hb270)<></th></hb150)<></th></hb270)<></th></hb200)<></th></hb200)<></th></hb150)<>	(<hb200)< th=""><th>(<hb200)< th=""><th>(<hb270)< th=""><th>(<hb150)< th=""><th>(<hb270)< th=""><th>(<hb100)< th=""><th>(<hb200)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""></hb150)<></th></hb100)<></th></hb200)<></th></hb100)<></th></hb270)<></th></hb150)<></th></hb270)<></th></hb200)<></th></hb200)<>	(<hb200)< th=""><th>(<hb270)< th=""><th>(<hb150)< th=""><th>(<hb270)< th=""><th>(<hb100)< th=""><th>(<hb200)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""></hb150)<></th></hb100)<></th></hb200)<></th></hb100)<></th></hb270)<></th></hb150)<></th></hb270)<></th></hb200)<>	(<hb270)< th=""><th>(<hb150)< th=""><th>(<hb270)< th=""><th>(<hb100)< th=""><th>(<hb200)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""></hb150)<></th></hb100)<></th></hb200)<></th></hb100)<></th></hb270)<></th></hb150)<></th></hb270)<>	(<hb150)< th=""><th>(<hb270)< th=""><th>(<hb100)< th=""><th>(<hb200)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""></hb150)<></th></hb100)<></th></hb200)<></th></hb100)<></th></hb270)<></th></hb150)<>	(<hb270)< th=""><th>(<hb100)< th=""><th>(<hb200)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""></hb150)<></th></hb100)<></th></hb200)<></th></hb100)<></th></hb270)<>	(<hb100)< th=""><th>(<hb200)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""></hb150)<></th></hb100)<></th></hb200)<></th></hb100)<>	(<hb200)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""></hb150)<></th></hb100)<></th></hb200)<>	(<hb100)< th=""><th>(<hb150)< th=""></hb150)<></th></hb100)<>	(<hb150)< th=""></hb150)<>
±	+		+	+	+				±		±				

Cepuu TB623, TCH23

Spiral point taps

Нержавеющие стали

Низколегированные и углеродистые стали с прочностью менее 700 Н/мм

D2		D1
ν ₁ 2		L2
VI -	DIN 371	[HEREFFEE FEET FEET DE
	DIN 376	
		TO STREET BEAUTIFFE TO STREET BEAUTIFF TO STREET BEAUT

06	Обозначение				P, MM	L1,	L2,	D2,	a,	
Vap		Hardslick							D1, мм	
-	-	TCH23366	4	M8	1,25	20	90	8	6,2	6,8
-	-	TCH23426	18	M10	1,5	22	100	10	8	8,5
-	-	TCH23506	1	M12	1,75	24	110	9	7	10,2
TB623946	7	-	-	M30	3,5	40	180	22	18	26,5

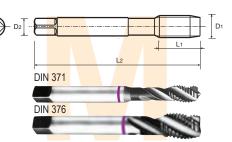
Угле	родистые с	тали	Нержавеющие стали			Чугуны		Ті и сг	ілавы	Ni и сı	плавы	Сиис	плавы	Al и cı	плавы
<400	<700	<850	Легкообр.	Аустенитные	<1100	Серый чугун	Ковкий чугун	<700	<900	<500	<900	<350	Кор. стружка	<350	Si<0,5%
H/mm ²	H/mm²	H/mm²	<850 H/mm ²	<850 H/mm ²	H/mm ²	<500 H/mm ²	<700 H/mm ²	H/mm²	Н/мм²	H/mm²	H/mm²	H/mm ²	<700 H/mm²	H/mm²	<500 H/mm ²
(<hb120)< td=""><td>(<hb200)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb250)<></td></hb200)<></td></hb120)<>	(<hb200)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb250)<></td></hb200)<>	(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb250)<>	(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<></td></hb250)<>	(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<>	(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<></td></hb300)<>	(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<>	(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<>	(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<>	(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<>	(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<>	(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<>	(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<>	(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<>	(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<>	(<hb150)< td=""></hb150)<>
+	+		+	+	+				±		±				

Cepuu TR833, TQ833

Spiral flute taps

Титановые сплавы Никелевые сплавы

DIN 371/376



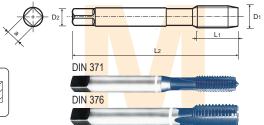
	Обозначение Без покрытия Vap					L1, мм	L2,	D2, мм	а,	D1, MM
ьез покры	гия	Vap								DI, MM
TR833136	20			M2	0,4	8	45	2,8	2,1	1,6
-	-	TQ833176	43	M2,5	0,45	9	50	2,8	2,1	2,05
-	-	TQ833246	56	M4	0,7	7	63	4,5	-	3,3

Углеродистые стали	Леги	рованные с	тали	Нержавею	щие стали	Ті и сплавы			Ni и сплавы			Сиис	плавы	Al и cı	плавы
<400 Н/мм² (<НВ120)	<850 Н/мм² (<НВ250)	<1200 H/мм² (<hb350)< th=""><th>>1200 H/мм² (>HB350)</th><th><850 Н/мм²</th><th>Аустенитные <850 H/мм² (<hb250)< th=""><th></th><th><900 Н/мм² (<НВ270)</th><th><1300 Н/мм² (<hb350)< th=""><th><500 Н/мм² (<НВ150)</th><th><900 Н/мм² (<hb270)< th=""><th><1400 Н/мм² (<НВ410)</th><th>Дл. стружка <700 Н/мм² (<НВ200)</th><th><1500 Н/мм² (<НВ470)</th><th><350 Н/мм² (<НВ100)</th><th>Si<0,5% <500 H/mm² (<hb150)< th=""></hb150)<></th></hb270)<></th></hb350)<></th></hb250)<></th></hb350)<>	>1200 H/мм² (>HB350)	<850 Н/мм²	Аустенитные <850 H/мм² (<hb250)< th=""><th></th><th><900 Н/мм² (<НВ270)</th><th><1300 Н/мм² (<hb350)< th=""><th><500 Н/мм² (<НВ150)</th><th><900 Н/мм² (<hb270)< th=""><th><1400 Н/мм² (<НВ410)</th><th>Дл. стружка <700 Н/мм² (<НВ200)</th><th><1500 Н/мм² (<НВ470)</th><th><350 Н/мм² (<НВ100)</th><th>Si<0,5% <500 H/mm² (<hb150)< th=""></hb150)<></th></hb270)<></th></hb350)<></th></hb250)<>		<900 Н/мм² (<НВ270)	<1300 Н/мм² (<hb350)< th=""><th><500 Н/мм² (<НВ150)</th><th><900 Н/мм² (<hb270)< th=""><th><1400 Н/мм² (<НВ410)</th><th>Дл. стружка <700 Н/мм² (<НВ200)</th><th><1500 Н/мм² (<НВ470)</th><th><350 Н/мм² (<НВ100)</th><th>Si<0,5% <500 H/mm² (<hb150)< th=""></hb150)<></th></hb270)<></th></hb350)<>	<500 Н/мм² (<НВ150)	<900 Н/мм² (<hb270)< th=""><th><1400 Н/мм² (<НВ410)</th><th>Дл. стружка <700 Н/мм² (<НВ200)</th><th><1500 Н/мм² (<НВ470)</th><th><350 Н/мм² (<НВ100)</th><th>Si<0,5% <500 H/mm² (<hb150)< th=""></hb150)<></th></hb270)<>	<1400 Н/мм² (<НВ410)	Дл. стружка <700 Н/мм² (<НВ200)	<1500 Н/мм² (<НВ470)	<350 Н/мм² (<НВ100)	Si<0,5% <500 H/mm² (<hb150)< th=""></hb150)<>
		+	+			±	+	+		+	+		±		

Cepuu TY821

Straight flute taps

Чугуны


HSS E

Обозначение		М	Р,	L1,	L2, мм	D2, мм	а, мм	D1, MM
TY821136 3		M2	0,4	8	45	2,8	2,1	1,6
TY821246	1	M4	0,7	13	63	4,5	3,4	3,3
TY821316 4		M6	1	17	80	6	4,9	5

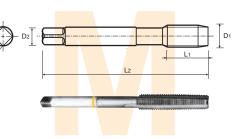
Обозначение		М	P,	L1,	L2,	D2,	а,	
TiAIN								D1, мм
TY821546 5		M14	2	26	110	11	9	12
TY821606	5	M16	2	27	110	12	9	14
TY821656	5	M18	2,5	30	125	14	11	15,5
TY821706	5	M20	2,5	32	140	16	12	17,5

Углеро	дистые с	стали	Нержавею	щие стали		Чуг	/ны			Сиис	плавы			Al и сг	плавы	
<400	<7	700 .	Легкообр.	Аустенитные	Серый чугун	Серый чугун	Ковкий чугун	Ковкий чугун	<350	Кор. стружка	Дл. стружка	<1500	<350	Si<0,5%	Si<10%	Si>10%
H/mm²	H/r	/MM ² <	<850 H/mm ²	<850 H/мм²	<500 H/mm ²	<1000 H/mm ²	<700 H/mm ²	<1000 H/mm²	H/mm²	<700 H/mm²	<700 H/mm ²	H/mm ²	H/mm²	<500 H/mm²	<400 H/mm ²	<400 H/mm²
(<hb12< th=""><th>0) (<he< th=""><th>B200)</th><th>(<hb250)< th=""><th>(<hb250)< th=""><th>(<hb150)< th=""><th>(<hb300)< th=""><th>(<hb200)< th=""><th>(<hb300)< th=""><th>(<hb100)< th=""><th>(<hb200)< th=""><th>(<hb200)< th=""><th>(<hb470)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""><th>(<hb120)< th=""><th>(<hb120)< th=""></hb120)<></th></hb120)<></th></hb150)<></th></hb100)<></th></hb470)<></th></hb200)<></th></hb200)<></th></hb100)<></th></hb300)<></th></hb200)<></th></hb300)<></th></hb150)<></th></hb250)<></th></hb250)<></th></he<></th></hb12<>	0) (<he< th=""><th>B200)</th><th>(<hb250)< th=""><th>(<hb250)< th=""><th>(<hb150)< th=""><th>(<hb300)< th=""><th>(<hb200)< th=""><th>(<hb300)< th=""><th>(<hb100)< th=""><th>(<hb200)< th=""><th>(<hb200)< th=""><th>(<hb470)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""><th>(<hb120)< th=""><th>(<hb120)< th=""></hb120)<></th></hb120)<></th></hb150)<></th></hb100)<></th></hb470)<></th></hb200)<></th></hb200)<></th></hb100)<></th></hb300)<></th></hb200)<></th></hb300)<></th></hb150)<></th></hb250)<></th></hb250)<></th></he<>	B200)	(<hb250)< th=""><th>(<hb250)< th=""><th>(<hb150)< th=""><th>(<hb300)< th=""><th>(<hb200)< th=""><th>(<hb300)< th=""><th>(<hb100)< th=""><th>(<hb200)< th=""><th>(<hb200)< th=""><th>(<hb470)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""><th>(<hb120)< th=""><th>(<hb120)< th=""></hb120)<></th></hb120)<></th></hb150)<></th></hb100)<></th></hb470)<></th></hb200)<></th></hb200)<></th></hb100)<></th></hb300)<></th></hb200)<></th></hb300)<></th></hb150)<></th></hb250)<></th></hb250)<>	(<hb250)< th=""><th>(<hb150)< th=""><th>(<hb300)< th=""><th>(<hb200)< th=""><th>(<hb300)< th=""><th>(<hb100)< th=""><th>(<hb200)< th=""><th>(<hb200)< th=""><th>(<hb470)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""><th>(<hb120)< th=""><th>(<hb120)< th=""></hb120)<></th></hb120)<></th></hb150)<></th></hb100)<></th></hb470)<></th></hb200)<></th></hb200)<></th></hb100)<></th></hb300)<></th></hb200)<></th></hb300)<></th></hb150)<></th></hb250)<>	(<hb150)< th=""><th>(<hb300)< th=""><th>(<hb200)< th=""><th>(<hb300)< th=""><th>(<hb100)< th=""><th>(<hb200)< th=""><th>(<hb200)< th=""><th>(<hb470)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""><th>(<hb120)< th=""><th>(<hb120)< th=""></hb120)<></th></hb120)<></th></hb150)<></th></hb100)<></th></hb470)<></th></hb200)<></th></hb200)<></th></hb100)<></th></hb300)<></th></hb200)<></th></hb300)<></th></hb150)<>	(<hb300)< th=""><th>(<hb200)< th=""><th>(<hb300)< th=""><th>(<hb100)< th=""><th>(<hb200)< th=""><th>(<hb200)< th=""><th>(<hb470)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""><th>(<hb120)< th=""><th>(<hb120)< th=""></hb120)<></th></hb120)<></th></hb150)<></th></hb100)<></th></hb470)<></th></hb200)<></th></hb200)<></th></hb100)<></th></hb300)<></th></hb200)<></th></hb300)<>	(<hb200)< th=""><th>(<hb300)< th=""><th>(<hb100)< th=""><th>(<hb200)< th=""><th>(<hb200)< th=""><th>(<hb470)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""><th>(<hb120)< th=""><th>(<hb120)< th=""></hb120)<></th></hb120)<></th></hb150)<></th></hb100)<></th></hb470)<></th></hb200)<></th></hb200)<></th></hb100)<></th></hb300)<></th></hb200)<>	(<hb300)< th=""><th>(<hb100)< th=""><th>(<hb200)< th=""><th>(<hb200)< th=""><th>(<hb470)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""><th>(<hb120)< th=""><th>(<hb120)< th=""></hb120)<></th></hb120)<></th></hb150)<></th></hb100)<></th></hb470)<></th></hb200)<></th></hb200)<></th></hb100)<></th></hb300)<>	(<hb100)< th=""><th>(<hb200)< th=""><th>(<hb200)< th=""><th>(<hb470)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""><th>(<hb120)< th=""><th>(<hb120)< th=""></hb120)<></th></hb120)<></th></hb150)<></th></hb100)<></th></hb470)<></th></hb200)<></th></hb200)<></th></hb100)<>	(<hb200)< th=""><th>(<hb200)< th=""><th>(<hb470)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""><th>(<hb120)< th=""><th>(<hb120)< th=""></hb120)<></th></hb120)<></th></hb150)<></th></hb100)<></th></hb470)<></th></hb200)<></th></hb200)<>	(<hb200)< th=""><th>(<hb470)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""><th>(<hb120)< th=""><th>(<hb120)< th=""></hb120)<></th></hb120)<></th></hb150)<></th></hb100)<></th></hb470)<></th></hb200)<>	(<hb470)< th=""><th>(<hb100)< th=""><th>(<hb150)< th=""><th>(<hb120)< th=""><th>(<hb120)< th=""></hb120)<></th></hb120)<></th></hb150)<></th></hb100)<></th></hb470)<>	(<hb100)< th=""><th>(<hb150)< th=""><th>(<hb120)< th=""><th>(<hb120)< th=""></hb120)<></th></hb120)<></th></hb150)<></th></hb100)<>	(<hb150)< th=""><th>(<hb120)< th=""><th>(<hb120)< th=""></hb120)<></th></hb120)<></th></hb150)<>	(<hb120)< th=""><th>(<hb120)< th=""></hb120)<></th></hb120)<>	(<hb120)< th=""></hb120)<>
						+	+			+						

Серия ТС803

Легкообрабатываемые стали с прочностью менее 850 Н/мм² Предназначен для применения на гайконарезных станках-автоматах Снятие готовой детали осуществляется через хвостовик метчика

DIN 357


Полированная поверхность

Обозначение TC803246 10	М	Р,	L1,	L2, MM	D2, мм	а, мм	D1, MM	
TC803246	10	M4	0,7	25	90	2,8	2,1	33

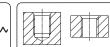
Обозначение		M	Р,	L1, мм	L2, мм	D2, мм	а,	D1, MM
TC803506	15	M12	1,75	50	180	9	7	102

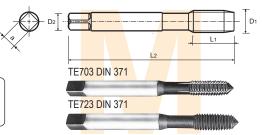
	Углеродис	тые стали	Легирован	ные стали	Нер	кавеющие с	тали		Чугун			Сиис	плавы		Al и cr	плавы
	<400	<700	<850	<1200	Легкообр.	Аустенитные	<1100	Серый чугун	Ковкий чугун	Ковкий чугун	<350	Кор. стружка	Дл. стружка	<1500	Si<10%	Si>10%
	H/mm ²	H/mm²	H/mm²	Н/мм²	<850 H/mm ²	<850 H/mm ²	H/mm ²	<1000 H/mm ²	<700 H/mm²	<1000 H/mm ²	H/mm ²	<700 H/mm²	<700 H/mm²	H/mm ²	<400 H/mm ²	<400 H/mm ²
	(<hb120)< td=""><td>(<hb200)< td=""><td>(<hb250)< td=""><td>(<hb350)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb300)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb470)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb470)<></td></hb200)<></td></hb200)<></td></hb100)<></td></hb300)<></td></hb200)<></td></hb300)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb350)<></td></hb250)<></td></hb200)<></td></hb120)<>	(<hb200)< td=""><td>(<hb250)< td=""><td>(<hb350)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb300)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb470)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb470)<></td></hb200)<></td></hb200)<></td></hb100)<></td></hb300)<></td></hb200)<></td></hb300)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb350)<></td></hb250)<></td></hb200)<>	(<hb250)< td=""><td>(<hb350)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb300)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb470)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb470)<></td></hb200)<></td></hb200)<></td></hb100)<></td></hb300)<></td></hb200)<></td></hb300)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb350)<></td></hb250)<>	(<hb350)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb300)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb470)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb470)<></td></hb200)<></td></hb200)<></td></hb100)<></td></hb300)<></td></hb200)<></td></hb300)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb350)<>	(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb300)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb470)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb470)<></td></hb200)<></td></hb200)<></td></hb100)<></td></hb300)<></td></hb200)<></td></hb300)<></td></hb300)<></td></hb250)<></td></hb250)<>	(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb300)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb470)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb470)<></td></hb200)<></td></hb200)<></td></hb100)<></td></hb300)<></td></hb200)<></td></hb300)<></td></hb300)<></td></hb250)<>	(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb300)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb470)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb470)<></td></hb200)<></td></hb200)<></td></hb100)<></td></hb300)<></td></hb200)<></td></hb300)<></td></hb300)<>	(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb300)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb470)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb470)<></td></hb200)<></td></hb200)<></td></hb100)<></td></hb300)<></td></hb200)<></td></hb300)<>	(<hb200)< td=""><td>(<hb300)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb470)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb470)<></td></hb200)<></td></hb200)<></td></hb100)<></td></hb300)<></td></hb200)<>	(<hb300)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb470)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb470)<></td></hb200)<></td></hb200)<></td></hb100)<></td></hb300)<>	(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb470)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb470)<></td></hb200)<></td></hb200)<></td></hb100)<>	(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb470)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb470)<></td></hb200)<></td></hb200)<>	(<hb200)< td=""><td>(<hb470)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb470)<></td></hb200)<>	(<hb470)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb470)<>	(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<>	(<hb120)< td=""></hb120)<>
Ī	±	±	±						±	±		±	±			±

Cepuu TE703

Cold forming taps

Материалы с относительным удлинением 8 - 10% Безстружечные метчики (раскатники)




DIN 371/376

Обозначение		М	P,	L1,	L2,	D2,	a,	
Азотирование								D1, мм
TE703136 7		M2	0,4	8	45	2,8	2,1	1,83

Углеродис	стые стали	Легирован	ные стали	Нер	кавеющие с	тали	Чугуны	Ті и сі	плавы	Ni и сı	плавы	Сиис	плавы	Al и сı	ллавы
<400	<700	<850	<1200	Легкообр.	Аустенитные	<1100	Серый чугун	<700	<900	<500	<900	<350	Дл. стружка	<350	Si<10%
H/mm²	H/mm²	H/mm ²	H/mm²	<850 H/mm ²	<850 H/mm ²	H/mm ²	<500 H/mm ²	H/mm ²	H/mm²	H/mm²	Н/мм²	H/mm ²	<700 H/мм²	H/mm²	<400 H/mm²
(<hb120)< td=""><td>(<hb200)< td=""><td>(<hb250)< td=""><td>(<hb350)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb120)< td=""></hb120)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb350)<></td></hb250)<></td></hb200)<></td></hb120)<>	(<hb200)< td=""><td>(<hb250)< td=""><td>(<hb350)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb120)< td=""></hb120)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb350)<></td></hb250)<></td></hb200)<>	(<hb250)< td=""><td>(<hb350)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb120)< td=""></hb120)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb350)<></td></hb250)<>	(<hb350)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb120)< td=""></hb120)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb350)<>	(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb120)< td=""></hb120)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<></td></hb250)<>	(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb120)< td=""></hb120)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<>	(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb120)< td=""></hb120)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb150)<></td></hb300)<>	(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb120)< td=""></hb120)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb150)<>	(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb120)< td=""></hb120)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<>	(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb120)< td=""></hb120)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<>	(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb120)< td=""></hb120)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<>	(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb120)< td=""></hb120)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<>	(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb120)< td=""></hb120)<></td></hb100)<></td></hb200)<></td></hb100)<>	(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb120)< td=""></hb120)<></td></hb100)<></td></hb200)<>	(<hb100)< td=""><td>(<hb120)< td=""></hb120)<></td></hb100)<>	(<hb120)< td=""></hb120)<>
+	+	+		±	±			±		+		±	±	+	±

Cepuu TCH14, TB914, TI914

Spiral flute taps

Нержавеющие стали

Низколегированные и углеродистые стали с прочностью менее 700 Н/мм2

DIN 371/376

6H

	Обозначение								L2,	D2,	а,	
Vap		Hardslic	Hardslick		TiCN		ММ	ММ				D1, мм
		TCH14426	4			M10	1,5	15	100	10	8	8,5
		TCH14546	3			M14	2	20	110	11	9	12

	Обозначение						D2,	a,	IM
Vap	Hardslick	TiCN		MM	ММ	ММ			D1, мм
	TCH14606 6		M16	2	20	110	12	9	14

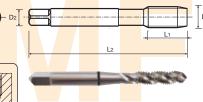
Угле	родистые с	тали	Нер	кавеющие с	тали	Чуг	уны	Ті и сг	плавы	Ni и сг	плавы	Сиис	плавы	Al и сı	плавы
<400	<700	<850	Легкообр.	Аустенитные	<1100	Серый чугун	Ковкий чугун	<700	<900	<500	<900	<350	Кор. стружка	<350	Si<0,5%
H/mm ²	H/mm²	H/mm²	<850 H/mm ²	<850 H/mm ²	H/mm ²	<500 Н/мм²	<700 H/mm²	H/mm²	H/mm²	Н/мм²	Н/мм²	H/mm ²	<700 H/mm²	H/mm²	<500 H/mm ²
(<hb120)< td=""><td>(<hb200)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb250)<></td></hb200)<></td></hb120)<>	(<hb200)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb250)<></td></hb200)<>	(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb250)<>	(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<></td></hb250)<>	(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<>	(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<></td></hb300)<>	(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<>	(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<>	(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<>	(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<>	(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<>	(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<>	(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<>	(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<>	(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<>	(<hb150)< td=""></hb150)<>
+	+		+	+	+				±		±				

Серия ТС844

Spiral flute taps

Универсального применения

Запатентованная YG-1 геометрия режущей части обеспечивает более высокую стойкость инструмента за счет нарезания резьбы по профильно-генераторной схеме



	MF	Р,	L1,	L2, мм	D2, мм	а,	
Полированные							D1, мм
TC844616 11		1,5	15	100	12	9	14,5
			IVIF MM	MF MM MM	MF MM MM MM	MF MM MM MM MM	MF MM MM MM MM MM

Углеродис	тые стали	Легирован	ные стали	Нержавею	щие стали	Чуг	уны	Ті и сі	плавы	Ni и сı	плавы	Сиис	плавы	Al и cr	1 Лавы
<400	<850	<1200	>1200	Легкообр.	<1100	Серый чугун	Ковкий чугун	<700	<900	<500	<900	<350	Дл. стружка	Si<0,5%	Si>10%
H/mm²	H/mm²	H/mm²	Н/мм²	<850 H/mm ²	H/mm ²	<1000 H/mm²	<1000 H/mm²	H/mm ²	H/mm²	H/mm²	Н/мм²	H/mm ²	<700 H/mm²	<500 Н/мм²	<400 H/mm ²
(<hb120)< td=""><td>(<hb250)< td=""><td>(<hb350)< td=""><td>(>HB350)</td><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""></hb120)<></td></hb150)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb300)<></td></hb300)<></td></hb250)<></td></hb350)<></td></hb250)<></td></hb120)<>	(<hb250)< td=""><td>(<hb350)< td=""><td>(>HB350)</td><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""></hb120)<></td></hb150)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb300)<></td></hb300)<></td></hb250)<></td></hb350)<></td></hb250)<>	(<hb350)< td=""><td>(>HB350)</td><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""></hb120)<></td></hb150)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb300)<></td></hb300)<></td></hb250)<></td></hb350)<>	(>HB350)	(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""></hb120)<></td></hb150)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb300)<></td></hb300)<></td></hb250)<>	(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""></hb120)<></td></hb150)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb300)<></td></hb300)<>	(<hb300)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""></hb120)<></td></hb150)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb300)<>	(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""></hb120)<></td></hb150)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb300)<>	(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""></hb120)<></td></hb150)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<>	(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""></hb120)<></td></hb150)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<>	(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""></hb120)<></td></hb150)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<>	(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""></hb120)<></td></hb150)<></td></hb200)<></td></hb100)<></td></hb270)<>	(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""></hb120)<></td></hb150)<></td></hb200)<></td></hb100)<>	(<hb200)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""></hb120)<></td></hb150)<></td></hb200)<>	(<hb150)< td=""><td>(<hb120)< td=""></hb120)<></td></hb150)<>	(<hb120)< td=""></hb120)<>
+	+	+		+	+	+	+	+	±	+	±	+	+	+	+

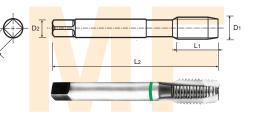
Серия ТВ123

Spiral point taps

Нержавеющие стали

Низколегированные и углеродистые стали с прочностью менее 700 H/мм²

DIN 374



Обозначение		MF	Р,	L1, мм	L2, MM	D2, мм	а, мм	D1, MM
TB123456	5	M10	0,75	18	90	7	5,5	9,2

Обозначение		MF	Р, мм	L1, мм	L2, мм	D2, мм	а, мм	D1, MM
TB123516	5	M12	1,5	22	100	9	7	10,5
TB123526	5	M12	1,25	22	100	9	7	10,8
TB123536	1	M12	1	18	100	9	7	11

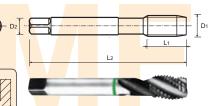
Угле	родистые с	гали	Нер	кавеющие с	тали	Чуг	уны	Тіисг	плавы	вы Ni и сплавы		Си и сплавы		Al и сплавы	
<400	<700	<850	Легкообр.	Аустенитные	<1100	Серый чугун	Ковкий чугун	<700	<900	<500	<900	<350	Кор. стружка	<350	Si<0,5%
H/mm ²	Н/мм²	H/mm ²	<850 H/mm ²	<850 H/mm ²	H/mm ²	<500 H/mm ²	<700 H/mm ²	H/mm²	H/mm²	H/mm²	Н/мм²	H/mm ²	<700 H/mm²	H/mm²	<500 Н/мм²
(<hb120)< td=""><td>(<hb200)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb250)<></td></hb200)<></td></hb120)<>	(<hb200)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb250)<></td></hb200)<>	(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb250)<>	(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<></td></hb250)<>	(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<>	(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<></td></hb300)<>	(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<>	(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<>	(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<>	(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<>	(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<>	(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<>	(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<>	(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<>	(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<>	(<hb150)< td=""></hb150)<>
+	+		+	+	+				±		±				

Серия ТВ183

Spiral flute taps

Нержавеющие стали

Низколегированные и углеродистые стали с прочностью менее 700 H/мм²



Обозначение		MF	Р,	L1, мм	L2, MM	D2, мм	а, мм	D1, мм
TB183436	5	M10	1,25	16	100	7	5,5	8,8
TB183446	5	M10	1	10	90	7	5,5	9

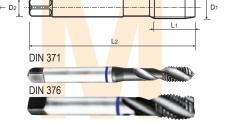
Обозначение		MF	Р, мм	L1, мм	L2, мм	D2, мм	а, мм	D1, MM
TB183556	10	M14	1,5	15	100	11	9	12,5
TB183566	3	M14	1,25	15	100	11	9	12,8
TB183616	3	M16	1,5	15	100	12	9	14,5
TB183676	1	M18	1,5	17	110	14	11	16,5

Угле	еродистые с	тали	Hep	кавеющие с	тали	Чуг	уны	Тіис	плавы	Ni и сı	плавы	Сиис	плавы	Alиc	плавы
<400	<700	<850	Легкообр.	Аустенитные	<1100	Серый чугун	Ковкий чугун	<700	<900	<500	<900	<350	Кор. стружка	<350	Si<0,5%
H/mm²	H/mm²	H/mm²	<850 H/mm²	<850 H/mm ²	H/mm ²	<500 H/mm ²	<700 H/mm ²	H/mm ²	H/mm²	H/mm ²	H/mm²	H/mm ²	<700 H/mm²	H/mm ²	<500 H/mm ²
(<hb120)< td=""><td>(<hb200)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb250)<></td></hb200)<></td></hb120)<>	(<hb200)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb250)<></td></hb200)<>	(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<></td></hb250)<></td></hb250)<>	(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<></td></hb250)<>	(<hb250)< td=""><td>(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<></td></hb300)<></td></hb250)<>	(<hb300)< td=""><td>(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<></td></hb300)<>	(<hb150)< td=""><td>(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<></td></hb150)<>	(<hb200)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<></td></hb200)<>	(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<></td></hb200)<>	(<hb270)< td=""><td>(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<></td></hb270)<>	(<hb150)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb150)<>	(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<>	(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<>	(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<></td></hb200)<>	(<hb100)< td=""><td>(<hb150)< td=""></hb150)<></td></hb100)<>	(<hb150)< td=""></hb150)<>
+	+		+	+	+				±		±				

Cepuu TC163, TE953*

Spiral flute taps

Алюминий и алюминиевые сплавы



O	бозн	ачение	М	Р,	L1,	L2,	D2, мм	а,	IME
Без покры	гия	Азотировани	е						D1, мм
TC163346	3		M7	1	10	80	7	5,5	6
TC163396	3		M9	1,25	13	90	9	7	7,8
TC163506	31		M12	1,75	18	110	9	7	10,2

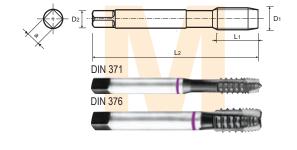
06	бозн	ачение		М	Р,	L1,	L2,	D2,	а,	
Без покрыт	гия	Азотирован	ие							D1, мм
TC163546	5			M14	2	20	110	11	9	12
TC163606	2			M16	2	20	110	12	9	14
TC163656	4			M18	2,5	25	125	14	11	15,5

Углер	одистые	стали	Легированные стали	Нержавею	щие стали	Чуг	уны	Тіисг	ілавы	Сиис	плавы		Al и сı	плавы	
<400 Н/мм² (<НВ120)	<700 Н/мм² (<hb200)< th=""><th><850 Н/мм² (<НВ250)</th><th><1200 Н/мм² (<hb350)< th=""><th>Легкообр. <850 H/мм² (<hb250)< th=""><th></th><th></th><th>Серый чугун <1000 H/мм² (<hb300)< th=""><th><700 Н/мм² (<НВ200)</th><th><900 Н/мм² (<hb270)< th=""><th><350 Н/мм² (<НВ100)</th><th>Кор. стружка <700 Н/мм² (<НВ200)</th><th></th><th>Si<0,5% <500 Н/мм² (<НВ150)</th><th>Si<10% <400 Н/мм² (<НВ120)</th><th>Si>10% <400 H/mm² (<hb120)< th=""></hb120)<></th></hb270)<></th></hb300)<></th></hb250)<></th></hb350)<></th></hb200)<>	<850 Н/мм² (<НВ250)	<1200 Н/мм² (<hb350)< th=""><th>Легкообр. <850 H/мм² (<hb250)< th=""><th></th><th></th><th>Серый чугун <1000 H/мм² (<hb300)< th=""><th><700 Н/мм² (<НВ200)</th><th><900 Н/мм² (<hb270)< th=""><th><350 Н/мм² (<НВ100)</th><th>Кор. стружка <700 Н/мм² (<НВ200)</th><th></th><th>Si<0,5% <500 Н/мм² (<НВ150)</th><th>Si<10% <400 Н/мм² (<НВ120)</th><th>Si>10% <400 H/mm² (<hb120)< th=""></hb120)<></th></hb270)<></th></hb300)<></th></hb250)<></th></hb350)<>	Легкообр. <850 H/мм² (<hb250)< th=""><th></th><th></th><th>Серый чугун <1000 H/мм² (<hb300)< th=""><th><700 Н/мм² (<НВ200)</th><th><900 Н/мм² (<hb270)< th=""><th><350 Н/мм² (<НВ100)</th><th>Кор. стружка <700 Н/мм² (<НВ200)</th><th></th><th>Si<0,5% <500 Н/мм² (<НВ150)</th><th>Si<10% <400 Н/мм² (<НВ120)</th><th>Si>10% <400 H/mm² (<hb120)< th=""></hb120)<></th></hb270)<></th></hb300)<></th></hb250)<>			Серый чугун <1000 H/мм² (<hb300)< th=""><th><700 Н/мм² (<НВ200)</th><th><900 Н/мм² (<hb270)< th=""><th><350 Н/мм² (<НВ100)</th><th>Кор. стружка <700 Н/мм² (<НВ200)</th><th></th><th>Si<0,5% <500 Н/мм² (<НВ150)</th><th>Si<10% <400 Н/мм² (<НВ120)</th><th>Si>10% <400 H/mm² (<hb120)< th=""></hb120)<></th></hb270)<></th></hb300)<>	<700 Н/мм² (<НВ200)	<900 Н/мм² (<hb270)< th=""><th><350 Н/мм² (<НВ100)</th><th>Кор. стружка <700 Н/мм² (<НВ200)</th><th></th><th>Si<0,5% <500 Н/мм² (<НВ150)</th><th>Si<10% <400 Н/мм² (<НВ120)</th><th>Si>10% <400 H/mm² (<hb120)< th=""></hb120)<></th></hb270)<>	<350 Н/мм² (<НВ100)	Кор. стружка <700 Н/мм² (<НВ200)		Si<0,5% <500 Н/мм² (<НВ150)	Si<10% <400 Н/мм² (<НВ120)	Si>10% <400 H/mm² (<hb120)< th=""></hb120)<>
±	±	±						±		+		+	+	+	

Cepuu TM293, TZ293

Spiral point taps

Титановые сплавы


HSS PM DIN 371/376

06	бозн	ачение		M	P,	L1,	L2,	D2,	a,	
Без покры	гия	TiAIN								D1, мм
		TZ293546	1	M14	2	26	110	11	9	12

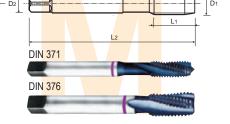
Углеродистые стали	Леги	рованные с	тали	Нержавею	щие стали		Ті и сплавь	ı		Ni и сплавь	ı	Сиис	плавы	Al и сі	плавы
<400 Н/мм² (<НВ120)	<850 H/мм² (<hb250)< th=""><th><1200 H/mm² (<hb350)< th=""><th>>1200 H/мм² (>HB350)</th><th><850 Н/мм²</th><th>Аустенитные <850 H/мм² (<hb250)< th=""><th></th><th><900 Н/мм² (<hb270)< th=""><th><1300 H/мм² (<hb350)< th=""><th><500 Н/мм² (<НВ150)</th><th><900 Н/мм² (<hb270)< th=""><th><1400 H/мм² (<hb410)< th=""><th>Дл. стружка <700 Н/мм² (<НВ200)</th><th><1500 H/мм² (<hb470)< th=""><th>,</th><th>Si<0,5% <500 H/mm² (<hb150)< th=""></hb150)<></th></hb470)<></th></hb410)<></th></hb270)<></th></hb350)<></th></hb270)<></th></hb250)<></th></hb350)<></th></hb250)<>	<1200 H/mm² (<hb350)< th=""><th>>1200 H/мм² (>HB350)</th><th><850 Н/мм²</th><th>Аустенитные <850 H/мм² (<hb250)< th=""><th></th><th><900 Н/мм² (<hb270)< th=""><th><1300 H/мм² (<hb350)< th=""><th><500 Н/мм² (<НВ150)</th><th><900 Н/мм² (<hb270)< th=""><th><1400 H/мм² (<hb410)< th=""><th>Дл. стружка <700 Н/мм² (<НВ200)</th><th><1500 H/мм² (<hb470)< th=""><th>,</th><th>Si<0,5% <500 H/mm² (<hb150)< th=""></hb150)<></th></hb470)<></th></hb410)<></th></hb270)<></th></hb350)<></th></hb270)<></th></hb250)<></th></hb350)<>	>1200 H/мм² (>HB350)	<850 Н/мм²	Аустенитные <850 H/мм² (<hb250)< th=""><th></th><th><900 Н/мм² (<hb270)< th=""><th><1300 H/мм² (<hb350)< th=""><th><500 Н/мм² (<НВ150)</th><th><900 Н/мм² (<hb270)< th=""><th><1400 H/мм² (<hb410)< th=""><th>Дл. стружка <700 Н/мм² (<НВ200)</th><th><1500 H/мм² (<hb470)< th=""><th>,</th><th>Si<0,5% <500 H/mm² (<hb150)< th=""></hb150)<></th></hb470)<></th></hb410)<></th></hb270)<></th></hb350)<></th></hb270)<></th></hb250)<>		<900 Н/мм² (<hb270)< th=""><th><1300 H/мм² (<hb350)< th=""><th><500 Н/мм² (<НВ150)</th><th><900 Н/мм² (<hb270)< th=""><th><1400 H/мм² (<hb410)< th=""><th>Дл. стружка <700 Н/мм² (<НВ200)</th><th><1500 H/мм² (<hb470)< th=""><th>,</th><th>Si<0,5% <500 H/mm² (<hb150)< th=""></hb150)<></th></hb470)<></th></hb410)<></th></hb270)<></th></hb350)<></th></hb270)<>	<1300 H/мм² (<hb350)< th=""><th><500 Н/мм² (<НВ150)</th><th><900 Н/мм² (<hb270)< th=""><th><1400 H/мм² (<hb410)< th=""><th>Дл. стружка <700 Н/мм² (<НВ200)</th><th><1500 H/мм² (<hb470)< th=""><th>,</th><th>Si<0,5% <500 H/mm² (<hb150)< th=""></hb150)<></th></hb470)<></th></hb410)<></th></hb270)<></th></hb350)<>	<500 Н/мм² (<НВ150)	<900 Н/мм² (<hb270)< th=""><th><1400 H/мм² (<hb410)< th=""><th>Дл. стружка <700 Н/мм² (<НВ200)</th><th><1500 H/мм² (<hb470)< th=""><th>,</th><th>Si<0,5% <500 H/mm² (<hb150)< th=""></hb150)<></th></hb470)<></th></hb410)<></th></hb270)<>	<1400 H/мм² (<hb410)< th=""><th>Дл. стружка <700 Н/мм² (<НВ200)</th><th><1500 H/мм² (<hb470)< th=""><th>,</th><th>Si<0,5% <500 H/mm² (<hb150)< th=""></hb150)<></th></hb470)<></th></hb410)<>	Дл. стружка <700 Н/мм² (<НВ200)	<1500 H/мм² (<hb470)< th=""><th>,</th><th>Si<0,5% <500 H/mm² (<hb150)< th=""></hb150)<></th></hb470)<>	,	Si<0,5% <500 H/mm² (<hb150)< th=""></hb150)<>
		±				±	+	+					±		

Cepuu TM903, TZ903

Spiral flute taps

Титановые сплавы

HSS PM DIN 371/376



06	бозн	ачение		М	Р,	L1,	L2,	D2,	а,	
Без покрыт	ТІАІМ ТZ903136									D1, мм
		TZ903136	67	M2	0,4	8	45	2,8	2,1	1,6
		TZ903176	35	M2,5	0,45	9	50	2,8	2,1	2,05
		TZ903206	24	M3	0,5	6	56	3,5	2,7	2,5
		TZ903486	2							

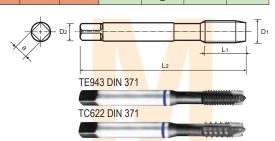
06	бозн	ачение		М	Р,	L1,	L2,	D2,	а,	
Без покрыт	гия	TiAIN								D1, мм
		TZ903286	36	M5	0,8	8	70	6	4,9	4,2
		TZ903546	23	M14	2	20	110	11	9	12
		TZ903606	5	M16	2	20	110	12	9	14
				*****					-	-

Углеродистые стали	Леги	рованные с	тали	Нержавею	щие стали		Ті и сплавы	ı	1	Ni и сплавь	1	Сиис	плавы	Al и сı	плавы
<400 Н/мм² (<НВ120)	<850 Н/мм² (<hb250)< td=""><td><1200 Н/мм² (<НВ350)</td><td>>1200 H/мм² (>HB350)</td><td>Легкообр. <850 H/мм² (<hb250)< td=""><td>Аустенитные <850 H/мм² (<hb250)< td=""><td><700 Н/мм² (<hb200)< td=""><td><900 Н/мм² (<hb270)< td=""><td><1300 Н/мм² (<НВ350)</td><td><500 Н/мм² (<НВ150)</td><td><900 Н/мм² (<hb270)< td=""><td><1400 Н/мм² (<НВ410)</td><td>Дл. стружка <700 Н/мм² (<НВ200)</td><td><1500 Н/мм² (<НВ470)</td><td><350 Н/мм² (<НВ100)</td><td>Si<0,5% <500 H/мм² (<hb150)< td=""></hb150)<></td></hb270)<></td></hb270)<></td></hb200)<></td></hb250)<></td></hb250)<></td></hb250)<>	<1200 Н/мм² (<НВ350)	>1200 H/мм² (>HB350)	Легкообр. <850 H/мм² (<hb250)< td=""><td>Аустенитные <850 H/мм² (<hb250)< td=""><td><700 Н/мм² (<hb200)< td=""><td><900 Н/мм² (<hb270)< td=""><td><1300 Н/мм² (<НВ350)</td><td><500 Н/мм² (<НВ150)</td><td><900 Н/мм² (<hb270)< td=""><td><1400 Н/мм² (<НВ410)</td><td>Дл. стружка <700 Н/мм² (<НВ200)</td><td><1500 Н/мм² (<НВ470)</td><td><350 Н/мм² (<НВ100)</td><td>Si<0,5% <500 H/мм² (<hb150)< td=""></hb150)<></td></hb270)<></td></hb270)<></td></hb200)<></td></hb250)<></td></hb250)<>	Аустенитные <850 H/мм² (<hb250)< td=""><td><700 Н/мм² (<hb200)< td=""><td><900 Н/мм² (<hb270)< td=""><td><1300 Н/мм² (<НВ350)</td><td><500 Н/мм² (<НВ150)</td><td><900 Н/мм² (<hb270)< td=""><td><1400 Н/мм² (<НВ410)</td><td>Дл. стружка <700 Н/мм² (<НВ200)</td><td><1500 Н/мм² (<НВ470)</td><td><350 Н/мм² (<НВ100)</td><td>Si<0,5% <500 H/мм² (<hb150)< td=""></hb150)<></td></hb270)<></td></hb270)<></td></hb200)<></td></hb250)<>	<700 Н/мм² (<hb200)< td=""><td><900 Н/мм² (<hb270)< td=""><td><1300 Н/мм² (<НВ350)</td><td><500 Н/мм² (<НВ150)</td><td><900 Н/мм² (<hb270)< td=""><td><1400 Н/мм² (<НВ410)</td><td>Дл. стружка <700 Н/мм² (<НВ200)</td><td><1500 Н/мм² (<НВ470)</td><td><350 Н/мм² (<НВ100)</td><td>Si<0,5% <500 H/мм² (<hb150)< td=""></hb150)<></td></hb270)<></td></hb270)<></td></hb200)<>	<900 Н/мм² (<hb270)< td=""><td><1300 Н/мм² (<НВ350)</td><td><500 Н/мм² (<НВ150)</td><td><900 Н/мм² (<hb270)< td=""><td><1400 Н/мм² (<НВ410)</td><td>Дл. стружка <700 Н/мм² (<НВ200)</td><td><1500 Н/мм² (<НВ470)</td><td><350 Н/мм² (<НВ100)</td><td>Si<0,5% <500 H/мм² (<hb150)< td=""></hb150)<></td></hb270)<></td></hb270)<>	<1300 Н/мм² (<НВ350)	<500 Н/мм² (<НВ150)	<900 Н/мм² (<hb270)< td=""><td><1400 Н/мм² (<НВ410)</td><td>Дл. стружка <700 Н/мм² (<НВ200)</td><td><1500 Н/мм² (<НВ470)</td><td><350 Н/мм² (<НВ100)</td><td>Si<0,5% <500 H/мм² (<hb150)< td=""></hb150)<></td></hb270)<>	<1400 Н/мм² (<НВ410)	Дл. стружка <700 Н/мм² (<НВ200)	<1500 Н/мм² (<НВ470)	<350 Н/мм² (<НВ100)	Si<0,5% <500 H/мм² (<hb150)< td=""></hb150)<>
		+				+	+	+					+		

Cepuu TC622, TE943

Spiral point taps

Алюминий и алюминиевые сплавы


HSS E

Обозначение ез покрытия Азотировании ТЕ943286 1 ТЕ943506 5				Р,	L1,	L2, мм	D2, мм	а, мм	D1, MM
		1	M5	0,8	15	70	6	4,9	4,2
	TE943506	5	M12	1,75	24	110	9	7	10,2
	TE943546	5	M14	2	26	110	11	9	12

Обозн	ачение		М	Р,	L1,	L2,	D2,	а,	
Без покрытия	Азотирован	ие							D1, мм
	TE943606	5	M16	2	27	110	12	9	14

	Углер	одистые (стали	Легированные стали	Нержавею	щие стали	Чуг	уны	Ті и сг	плавы	Сиис	плавы		Al и сı	плавы	
	<400	<700	<850	<1200 H/mm²				Серый чугун		<900		Кор. стружка		Si<0,5%	Si<10%	Si>10%
	H/MM ²	H/MM²	H/MM²	(<hr350)< td=""><td><850 H/mm²</td><td><850 H/mm²</td><td></td><td><1000 H/mm²</td><td></td><td>H/MM²</td><td>H/MM²</td><td><700 H/mw²</td><td></td><td></td><td></td><td><400 H/mm²</td></hr350)<>	<850 H/mm ²	<850 H/mm²		<1000 H/mm²		H/MM ²	H/MM ²	<700 H/mw²				<400 H/mm ²
ļ	(<hb120)< td=""><td>(<hb200)< td=""><td>(<hb250)< td=""><td>(/</td><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb150)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb150)<></td></hb250)<></td></hb250)<></td></hb250)<></td></hb200)<></td></hb120)<>	(<hb200)< td=""><td>(<hb250)< td=""><td>(/</td><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb150)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb150)<></td></hb250)<></td></hb250)<></td></hb250)<></td></hb200)<>	(<hb250)< td=""><td>(/</td><td>(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb150)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb150)<></td></hb250)<></td></hb250)<></td></hb250)<>	(/	(<hb250)< td=""><td>(<hb250)< td=""><td>(<hb150)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb150)<></td></hb250)<></td></hb250)<>	(<hb250)< td=""><td>(<hb150)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb150)<></td></hb250)<>	(<hb150)< td=""><td>(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb200)<></td></hb300)<></td></hb150)<>	(<hb300)< td=""><td>(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb200)<></td></hb300)<>	(<hb200)< td=""><td>(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<></td></hb200)<>	(<hb270)< td=""><td>(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<></td></hb270)<>	(<hb100)< td=""><td>(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb100)<></td></hb200)<></td></hb100)<>	(<hb200)< td=""><td>(<hb100)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb100)<></td></hb200)<>	(<hb100)< td=""><td>(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<></td></hb100)<>	(<hb150)< td=""><td>(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<></td></hb150)<>	(<hb120)< td=""><td>(<hb120)< td=""></hb120)<></td></hb120)<>	(<hb120)< td=""></hb120)<>
ı	±	±	±						±		+		+	+	+	

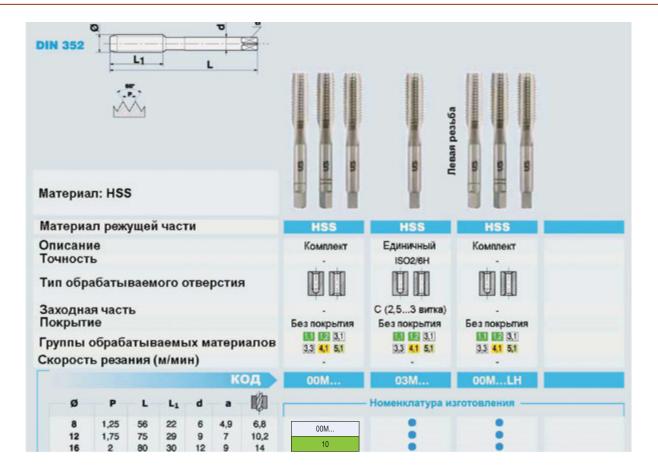
Серия ТВ373

Нержавеющие стали

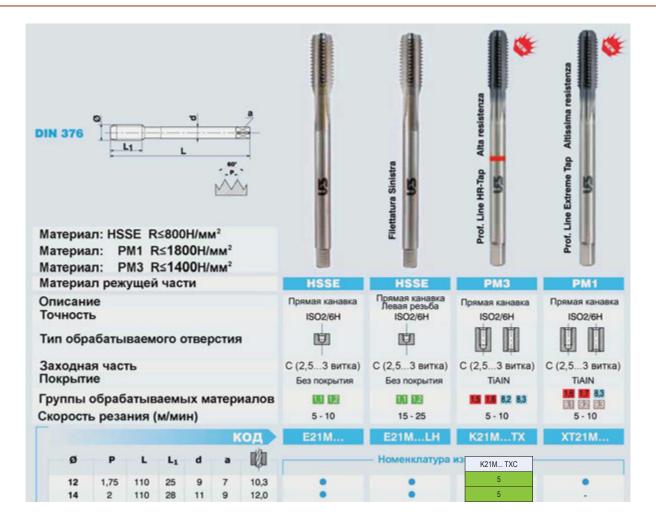
Комплект состоит из 3-х метчиков: первый и второй - черновые, третий - чистовой Окончательно резьбу можно получить только после прохода чистовым метчиком

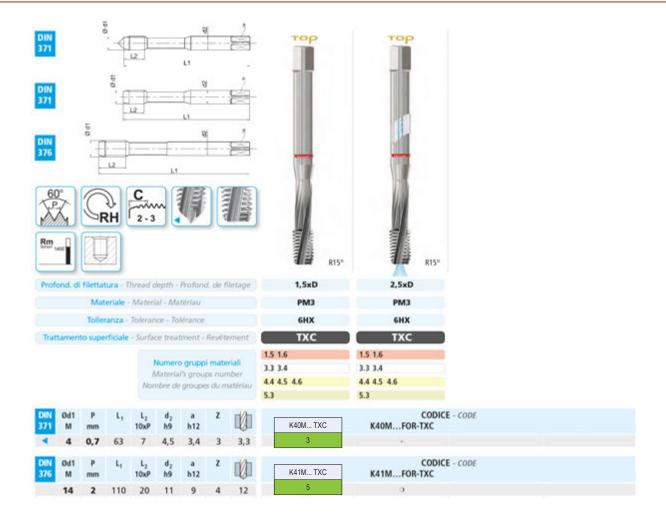
DIN 352

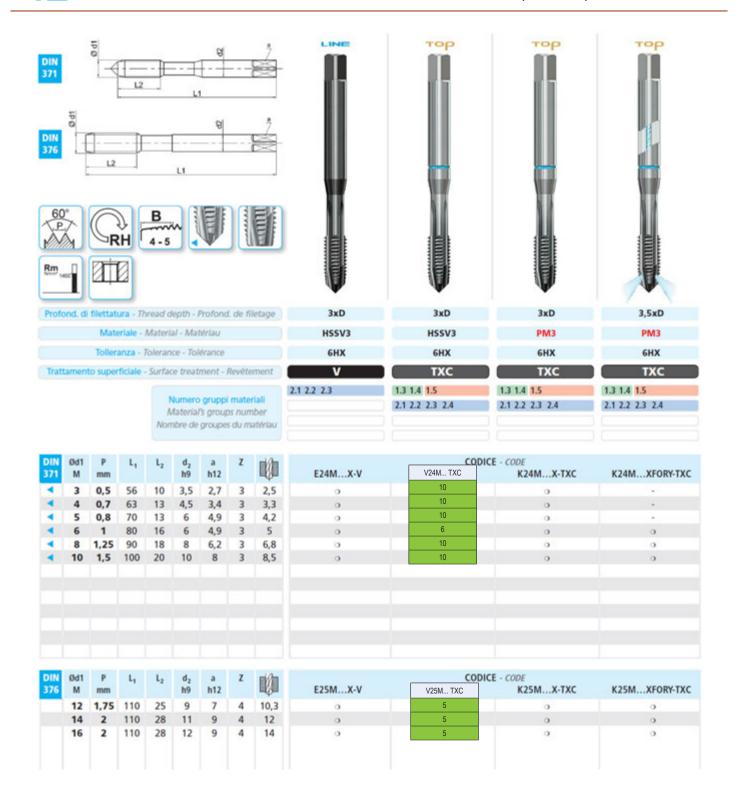
Vap



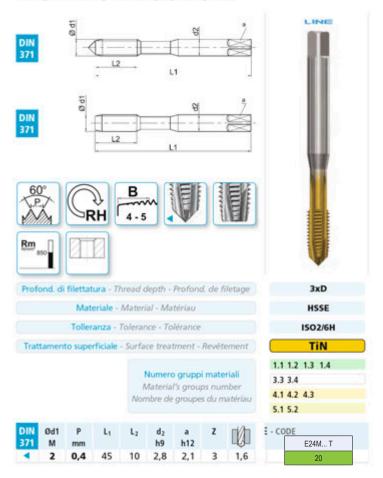
Обозначение		M	Р, мм	L1, MM	L2, MM	D2, мм	а, мм	D1, мм
TB373549	16	M14	2	26	80	11	9	12
TB373609	14	M16	2	27	80	12	9	14
TB373659	2	M18	2,5	30	95	14	11	15,5







Filettatura metrica ISO passo grosso DIN 13


N

USO GENERALE

General purpose - Usage Général

MACHINE TAPS - TARAUDS MACHINE

Filettatura metrica ISO passo grosso DIN 13

ISO Metric coarse thread DIN 13

Metrisches ISO-Regelgewinde DIN13 – Maschinengewindebohrer
Filetage métrique ISO DIN 13 – Tarauds machine
Rosca ISO métrica regular DIN13 – Machos de roscar a máquina

MASCHI A MACCHINA

MACHINE TAPS - TARAUDS MACHINE

Стержни шлифовальные

Обозначение	Кол.
Стержень шлиф. ф12,0 L=330 AF K40 UF	21
Стержень шлиф. ф25,0 L=330 AF K40 UF	17
Стержень шлиф. ф4,0 L=330 AF K40 UF	13
Стержень шлиф. ф5,0 L=330 AF K40 UF	9
Стержень шлиф. ф8,0 L=330 AF K40 UF	17

Серия MarCal 16U

Обозначен	ие	Диапазон измерений, мм	Цена деления, мм	Погрешность, мм	1 об. стрелки, мм	Длина губок, мм						
С роликом микроподачи												
4107005	•	0-150	0,03	1	40							
4107107	3 0-150		0,02	0,03	0,03 2							

Серия Micromar 40 A

✓ Микрометр с отсчетом по шкале стебля и барабана

Обозначение)	Диапазон измерений, мм	Цена деления, мм	Погрешность, мкм
4134002	2	50-75	0,01	5
4134003	2	75-100	0,01	6

В комплекте поставки: футляр, установочные меры (с диапазоном измерений от 25-50 мм/ 1-2"), инструкция по эксплуатации

Головки измерительные бокового действия

Обозначен	іие	Диапазон измерений, мм	Цена деления, мм	MM MM		Модель
4301300	1	± 0,5	0,01	38	32,3	800 SGB

Комплект поставки: пластиковый футляр, ключ для замены измерительных рычагов, измерительный рычаг с тв. спл. наконечником ø2 мм, опорная гильза 800 а8, опорная гильза 800 а6 (800 SGB)

Серия MarCator 1075R

Функции

Вкл./Выкл.

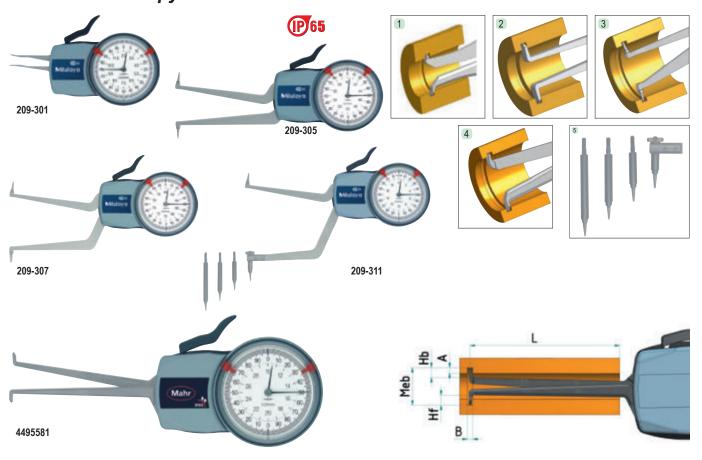
RESET - Обнуление индикации

PRESET - Предварительная установка значений

Переключение направления отсчета

LOCK - Блокировка кнопок

Auto-OFF по выбору DATA - Вывод данных*

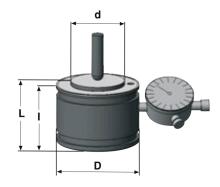

Обозначение	Диапазон измерений, мм	Разрешение, мм/дюйм	Погрешность, мм	Наружный диаметр, мм	Измерительное усилие, Н
4336010 1	336010 1 12,5 0,01/0,0005"		0,02	59,7	0,5-1

* Кабель вывода данных USB 16EXu 4102357 (2м) - дополнительная опция

(1) Комплект поставки: футляр, батарея CR 2032 (номер по каталогу - 4102520)

Калибр-скоба для внутренних измерений, с отчетом по круговой шкале

Обозначе	ние	Диапазон измерений, мм	Цена деления, мм	Погрешность, мм	Макс. глубина измерения L, мм	Макс. глубина канавки А, мм	Мин. ширина канавки В, мм	Измерительное усилие, Н	Измерительные поверхности			
Mahr		Измерительные наконечники: твердосплавные заостренные, радиус 0,1 мм										
4495583	1	30,0-50,0	0,01	0,03	85	7,0	1,2	1,1-1,6	см. рис. 2			
	•	00,0 00,0	0,01	0,00		.,,	.,-	.,,•	0 pr.o. 2			



Прибор настройки инструмента по оси Z

с индикатором часового типа

Номер по каталогу		D	d	Ход, мм	Размеры, мм
NE.702.50.M (702.50.M)	1	60	45	50,5 - 49,5	0,01
NE.703.20.3D	1 OCHOL	анием			

Индикаторный прибор настройки инструмента по оси Z

Номер по каталогу		D	d	i,
702.60	3	39	19	56 - 60

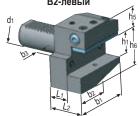
Серия MarCal 30EWR

- С выводом данных*
- Разрешение 0,01 мм / 0,0005"

Обозначени	ıe	Диапазон измерений, мм/дюйм	Погрешность, мм	размеры (дхш).		
4126700	1	0-150/6"	0,03	234x100		

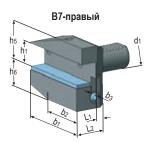
* Кабель вывода данных USB 16EXu 4102357 (2м) - дополнительная опция

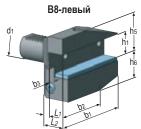
① Комплект поставки: футляр, одна батарея CR2032 (№4102520)



Резцедержатель радиальный короткий. Форма B1 – правый. Форма B2 – левый.

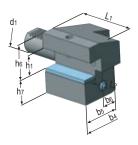
	Код В1		Обозначение	Von D2	Обозначение	Размеры, мм									
			B1	Код В2		B2	d_1	h ₁	L ₂	L ₁	b ₁	b ₂	b ₃	h ₅	h ₆
	-	-	-	209.32.16	14	B2-20×16×30	20	16	30	16	55	30	7	25	30





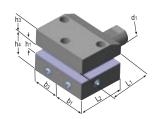
Резцедержатель радиальный перевёрнутый удлинённый. Форма B7 – правый. Форма B8 – левый.

Код В7		Обозначение Код В8			Обозначение	Размеры, мм								
код Б1		B7	код во		B8	d ₁	h ₁	L ₂	L ₁	b ₁	b ₂	b ₃	h ₅	h ₆
-	-	-	409.38.25	2	B8-40×25×44	40	25	44	22	118	75,5	12,5	48	42,5



Резцедержатель аксиальный перевёрнутый. Форма С4.

Von C4	Код С4					Pa	азмеры, м	IM			
код С4		C4	d ₁	h ₁	b ₄	b ₅	b ₆	L ₁	L ₂	h ₆	h ₇
309.44.20	1	C4-30×20	30	20	76	41	23	70	10	38	35


Держатель для свёрл с МНП. Форма Е1.

		•												
Код		Обозначение	Размеры, мм											
КОД		E1	d ₁	d ₂	d ₃	d ₆	h ₁	h ₂	L ₁	L ₃				
309.51.32.75	8	E1-30×32	30	32	52	68	28	30	75	22				

Резцедержатель универсальный перевёрнутый. Форма D2.

Код D1		Обозначение				Размеј	оы, мм			
код от		D2	d ₁	h ₁	b ₁	b ₃	L ₁	L ₂	h ₃	h ₄
409.56.25 2		D2-40×25	40	25	42,5	47,5	50	72	48	42,5

Держатель для расточных резцов. Форма Е2.

V Г2	Обозначение			Размеры, мм										
Код Е2		E2	d ₁	d ₂	d ₆	d ₈	h ₁	h ₂	L ₃	L ₆				
509.52.50.100	2	E2-50×50	50	50	98	98	35	-	30	100				

Патрон цанговый для цанг типа ER по DIN 6499. Форма E4.

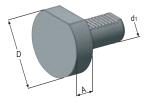
V		Обозначение		Размеры, мм									
Код		E4	d ₁	d ₂	d ₆	d ₁₀	h ₁	h ₂	L ₉				
169.02.10.50	3	E4-16×ER16 1-10	16	ER16 1-10	40	32	18	13	50				
209.02.16.57	1	E4-20×ER25 2-16	20	ER25 2-16	50	42	23	18	57				

Патрон сверлильный. Для правого и левого вращения.

	V о п				Размеры, мм	Размеры, мм										
	Код		d ₁	d	d ₂	Α	L									
	209.15.13.90	1	20	1-13	90	50	18									
Г	409.15.13.90	1	40	1-13	90	50	20									

Патрон сверлильный с соплом для подачи СОЖ. Для правого и левого вращения.

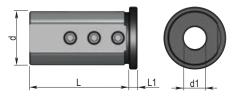
	Код		Размеры, мм									
			d ₁	d	Α	D	L ₃					
	409.15.16.95.K 2		40	3-16	95	57	20					


Резьбонарезной патрон с осевой компенсацией.

Von	Код				ı	Размеры, ми	1		
код		резьб	d_1	Α	D	d	L3	С	T
209.16.12.57 2		M2-M14	20	57	36,5	19	16	7	7

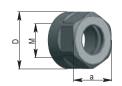
Заглушка. Форма Z2.

Von 72 ппости	. *	Vo. 72 070 71			Размеры, мм	
код ZZ IIIIaCIVI	Код Z2 пластик *	Код Z2 сталь		d1	Α	D
209.28.16	12	-	-	20	16	50



Втулки переходные.

Обозначение		Размеры, мм								
Ооозначение		d	d ₁	L	L ₁	Рис				
709.40.20.1.53			20	53	5	1				
709.40.32.1.53	709 40 32 1 53		32	53	5	2				



Гайки зажимные для цанговых патронов с цангами типа ER по DIN 6499.

Обозначение		Размеры, мм					
Под уплотнительную шай	йбу	Цанга	D	M	а		
113.02.16	4	ER25	42	M32×1,5	-		

B oxed set of assorted clamping elements

No. 6520

T-bolt set

In a sturdy and high-quality wooden box with removable folding lid. All parts tempered, strength class 8 or 10.

Order no.	Slot	DIN 787 Pcs.xLength		DIN 6379 Pcs.xLength	DIN 508	DIN 6330B	No. 6334	DIN 6319C+G	DIN 6340	LxWxH	Weight [Kg]
83048	83048 M18x20 1		2)	6x80, 8x125, 4x200, 4x315	10x	4x	4x	-	10x	359x342x56	11,0

^{1) =} T-nuts DIN 508 not suitable for this size.
2) = M18x20, included instead DIN 787 are 4 studs DIN 6379x125 mm and 2x80 mm,with DIN 508 T-nuts and DIN 6340 washers each. Single items available.