ISO metric thread

General pitch thread

Whitworth thread

Unified thread

British standard pipe thread

American standard pipe thread

Threading insert

Fully ground high precision inserts for high quality, high precision threading in a variety of materials e.g. steel, stainless steel, hard-to-machine materials.

TURNING

Threading Tools

Threading tools overview	•	A294-A295
Introduction on threading insert grade and chipbreaker	•	A296
Threading insert	•	A297-A304
Thin Threading insert code key		A297
Thin ISO metric external thread		A298-A299
Thin General pitch thread		A300
Thin Whitworth thread		A301
Thin Unified thread		A302
Thin British standard pipe thread		A303
Thin American standard pipe thread		A304
Thin threading insert code key		A305
Thin ISO metric external thread		A306
Thin general pitch thread		A307
Thin Whitworth thread		A308
Thin unified thread		A309
Thin British standard pipe thread		A310
Thin American standard pipe thread		A311
Threading tools	•	A312-A314
Threading tools code key		A312
External threading tools		A313
Internal threading tools		A314
Application information on threading	•	A315-A325

Threading tools overview

		Applications			For general use	
	Legend Thread name			1/8P 60° 1/4P		
				ISO metric thread With end	General pitch thread Without end	General pitch thread Without end
		Profil		GM	60	55
	Shape of insert (length: 11, 16, 22mm)			R style shown	R style shown A300	R style shown
	Pitch Dimension: (mm) (H×W×L) (Dia×L×Mir dia)		Pitch Dimensions (mm) (H×W×L) Pitch/mm Pitch/mm (pitch/Inch (Dia×L×Min. dia)		Pitch/mm (pitch/Inch)	Pitch/mm (pitch/Inch)
	External thread	R-type shown A313	$16 \times 16 \times 100$ $20 \times 20 \times 125$ $25 \times 25 \times 150$ $32 \times 25 \times 170$ $32 \times 32 \times 170$ $40 \times 40 \times 250$	0.5~6.0	0.5~5.0 (5~48)	0.5~5.0 (5~48)
	Internal thread	R-type shown A314	$\begin{array}{c} 16 \times 125 \times 12 \\ 16 \times 150 \times 16 \\ 16 \times 150 \times 20 \\ 20 \times 150 \times 25 \\ 20 \times 180 \times 25 \\ 25 \times 150 \times 32 \\ 32 \times 200 \times 40 \\ 32 \times 250 \times 40 \\ 40 \times 300 \times 50 \\ 50 \times 350 \times 63 \end{array}$	0.5~6.0	0.5~5.0 (5~48)	0.5~5.0 (5~48)

Threading Tools TURNING

Threading tools overview -

For general use	For aerospace industry	Heater, gas and water pipe thread	For gas and water faucet and pipe connection
R=0.137P R=0.137P	1/8P 60° 1/4P	R=0.137P 27.5°,27.5° 90° + 1°47)	30° 30° 90° 1°47'
Whitworth thread	Unified thread (American standard threads)	British standard taper piper threads	American standard taper pipe threads
W	W UN		NPT
R style shown	R style shown	R style shown	R style shown
Pitch/mm (pitch/Inch)	Pitch/mm (pitch/Inch)	Pitch/mm (pitch/Inch)	Pitch/mm (pitch/Inch)
8~19	8~24	11~28	8~27
8~19	8~24	11~28	8~27

Parting and grooving

A 295

- Specially treated edge for superior surface quality
- New Date for threading in a variety of materials of threading in a variety of materials of the provide the providet the provide the provide the provid Sharp nose with small cutting resistance and superior performance
- Full ground inserts with high dimensional precision for high quality threading

• New nano coating grade specially designed for threading with longer insert life

Advanced surface treatment techniques effectively reduce friction and allows for better wear observation.

Advanced TiAIN substrate nano coating, in combination with proper coating ingredients, improves the mechanical and thermal properties of coating.

Further optimizing coating structre, improving coating stress, enhancing bond strength of coating and substrate.

Case:

84% tool life improvement of ZCC+CT product than that of company A under the same cutting condition.

				Threadin	g Tools	URN	ING	
					Thre	ading ins	sert -	
			Thr	eading inserts c	ode key			
		•		Insert size				ning
			Code	Diameter of IC(mm)				Ger
			Z11	ø6.35				
			Z10	ø12.7				2
								ng a ovin
								arti
				Cutti	ng style			
				E -External th	nreading inserts			p 2
				I -Internal thr	eading inserts			eadi
								Thr
					Cutting direction			(š
								sert
					R-Rign			i bi
					L-Leit			adir
								Thre
								F
	Z 1	0		K Z	J 15C		PP)	
	Screw	pitch	•					
Full profile indicated by	Screw (Range of scre y numbers).	pitch w pitch is	•					
Full profile ndicated by mm	Screw (Range of scre y numbers).	pitch w pitch is PI	•					
Full profile indicated by mm 0.5-6	Screw(Range of screyy numbers).113.04.0	pitch w pitch is PI 8-5	•		Profile			
Full profile indicated by mm 0.5-6 V profile (Screw (Range of scre y numbers). 1 1 .0 4 Range of scre	pitch w pitch is 'PI 8-5 w pitch is	•	ISO ISO metric	Profile 50° throad			
Full profile indicated by mm 0.5-6 V profile (indicated b	Screw (Range of scre y numbers). 1 1 .0 4 Range of scre by letters). mm	pitch w pitch is PI 8-5 w pitch is TPI	6 -	ISO—ISO metric	Profile 50° thread			
Full profile indicated by 0.5-6 V profile (indicated b	Screw (Range of screy y numbers). 1.0 4.1 Range of screy by letters). mm 0.5-1.5	pitch w pitch is PI 8-5 w pitch is TPI 48-16	•	ISO—ISO metric (60—60° general p	Profile 60° thread bitch thread			
Full profile indicated by 0.5-6 V profile (indicated by A A AG	Screw (Range of screy 1 0 4: Range of screy by letters). mm 0.5-1.5 0.5-3.0	pitch w pitch is PI 8-5 w pitch is TPI 48-16 48-8	•	ISO—ISO metric (60—60° general p 55—55° general p	Profile 60° thread bitch thread bitch thread			
Full profile indicated by 0.5-6 V profile (indicated by A AG G	Screw (Range of screy 1 0 44 Range of screy 0y letters). mm 0.5-1.5 0.5-3.0 1.75-3.0	pitch w pitch is PI 8-5 w pitch is TPI 48-16 48-8 14-8 7,5	•	ISO—ISO metric (60—60° general p 55—55° general p W—Whitworth thr	Profile 50° thread bitch thread bitch thread ead			
Full profile indicated by 0.5-6 V profile (indicated b A AG G N	Screw (Range of screy y numbers). n 1 0 44 Range of screy by letters). mm 0.5-1.5 0.5-3.0 1.75-3.0 3.5-5.0	pitch w pitch is PI 8-5 w pitch is TPI 48-16 48-8 14-8 7-5	-	ISO—ISO metric (60—60° general p 55—55° general p W—Whitworth thr UN—Unified threa	Profile 50° thread bitch thread bitch thread tead ad(American standard th	reads)		
Full profile indicated by 0.5-6 V profile (indicated by A AG G N Thread	Screw (Range of screy y numbers). 1.0 4.1 Range of screy by letters). mm 0.5-1.5 0.5-3.0 1.75-3.0 3.5-5.0	pitch w pitch is PI 8-5 w pitch is TPI 48-16 48-8 14-8 7-5 Range of threa	d pitch	ISO—ISO metric (60—60° general p 55—55° general p W—Whitworth thr UN—Unified threa BSPT—British sta	Profile 50° thread bitch thread bitch thread cead ad(American standard th nndard taper piper thread	reads)		
Full profile indicated by 0.5-6 V profile (indicated b A AG G N Thread ISO m Genera	(Range of screy y numbers). 1.0 4: Range of screy y letters). mm 0.5-1.5 4 0.5-3.0 1.75-3.0 3.5-5.0 specification netric thread	pitch w pitch is PI 8-5 w pitch is TPI 48-16 48-8 14-8 7-5 Range of threa 0.5-6.0 0.5-5.0	d pitch	ISO—ISO metric of 60—60° general p 55—55° general p W—Whitworth thr UN—Unified threa BSPT—British sta NPT—American s	Profile 50° thread bitch thread bitch thread ead ad(American standard th indard taper piper thread standard taper piper thread	reads) ad		
Full profile indicated by 0.5-6 V profile (indicated by A A A G N Thread ISO m Genera Whitwo	Screw (Range of screy n 1 n 4 Range of screy by letters). mm 0.5-1.5 0.5-3.0 1.75-3.0 3.5-5.0 I specification netric thread al pitch thread with thread W	pitch w pitch is PI 8-5 w pitch is TPI 48-16 48-8 14-8 7-5 Range of threa 0.5-6.0 0.5-5.0 8-19	d pitch	ISO—ISO metric (60—60° general p 55—55° general p W—Whitworth thr UN—Unified threa BSPT—British sta NPT—American s	Profile 50° thread 50°	reads) ad		
Full profile indicated by 0.5-6 V profile (indicated by A A A G N Thread ISO m Genera Whitwo British star	Screw (Range of screy 1.0 4.0 Range of screy py letters). mm 0.5-1.5 0.5-3.0 1.75-3.0 3.5-5.0 specification netric thread al pitch thread onth thread	TPI Pitch is 8-5 w pitch is TPI 48-16 48-8 48-8 14-8 0.5-6.0 0.5-5.0 0.5-5.0 8-19 ad 11-28	d pitch	ISO—ISO metric (60—60° general p 55—55° general p W—Whitworth thr UN—Unified threa BSPT—British sta NPT—American s	Profile 50° thread bitch thread bitch thread ad(American standard th indard taper piper thread standard taper piper thread	reads) ad		
Full profile indicated by 0.5-6 V profile (indicated b A AG G N Thread ISO m Genera Whitwo British star	Screw (Range of screy y numbers). n 1.0 4.0 Range of screy by letters). mm 0.5-1.5 0.5-3.0 1.75-3.0 3.5-5.0 Ispecification netric thread al pitch thread W ndard pipe thread ied thread	pitch w pitch is "PI 8-5 w pitch is TPI 48-16 48-8 14-8 7-5 Range of thread 0.5-6.0 0.5-5.0 8-19 ad 11-28 8-24	d pitch	ISO—ISO metric (60—60° general p 55—55° general p W—Whitworth thr UN—Unified threa BSPT—British sta NPT—American s	Profile 50° thread bitch thread bitch thread read ad(American standard th ndard taper piper thread standard taper piper thread	reads) ad		

□-fully ground edge insert

PP -3-Dimensional chip-breaking insert

Threading insert

★Recommended grade (always stock available) ●Available grade (always stock available) OMake-to-order

Threading

Threading insert

	Threading Tools TURNIN	
	Threading insert	
ISO metric threa	(with end)	

ISO 965-1980 DIN 13 GB/T 197-2003 Tolerance class: 6g/6H										
	R type	L type								
	Ту	ре		Basic dime	nsions(mm)		Recommen	ded coating ade		
	The right hand tools	The left hand tools	Pitch	S	ØI.C	ød	YBG203	YBG205		
	Z111R0.5ISO	Z11IL0.5ISO	0.50	3.05	6.35	3.2	*	0		
	Z111R0.75ISO	Z11IL0.75ISO	0.75	3.05	6.35	3.2	*	0		
	Z11IR1.0ISO	Z11IL1.0ISO	1.00	3.05	6.35	3.2	*	0		
	Z11IR1.25ISO	Z11IL1.25ISO	1.25	3.05	6.35	3.2	*	0		
	Z11IR1.5ISO	Z11IL1.5ISO	1.50	3.05	6.35	3.2	*	0		
	Z11IR1.75ISO	Z11IL1.75ISO	1.75	3.05	6.35	3.2	*	0		
	Z11IR2.0ISO	Z11IL2.0ISO	2.00	3.05	6.35	3.2	*	0		
	Z16IR0.5ISO	Z16IL0.5ISO	0.50	3.52	9.525	4.0	*	0		
	Z16IR0.75ISO	Z16IL0.75ISO	0.75	3.52	9.525	4.0	*	0		
	Z16IR1.0ISO	Z16IL1.0ISO	1.00	3.52	9.525	4.0	*	0		
	Z16IR1.25ISO	Z16IL1.25ISO	1.25	3.52	9.525	4.0	*	0		
	Z16IR1.5ISO	Z16IL1.5ISO	1.50	3.52	9.525	4.0	*	0		
	Z16IR1.75ISO	Z16IL1.75ISO	1.75	3.52	9.525	4.0	*	0		
	Z16IR2.0ISO	Z16IL2.0ISO	2.00	3.52	9.525	4.0	*	0		
	Z16IR2.5ISO	Z16IL2.5ISO	2.50	3.52	9.525	4.0	*	0		
	Z16IR3.0ISO	Z16IL3.0ISO	3.00	3.52	9.525	4.0	*	0		
	Z22IR3.5ISO	Z22IL3.5ISO	3.50	4.65	12.7	5.0	*	0		
	Z22IR4.0ISO	Z22IL4.0ISO	4.00	4.65	12.7	5.0	*	0		
	Z22IR4.5ISO	Z22IL4.5ISO	4.50	4.65	12.7	5.0	*	0		
	Z22IR5.0ISO	Z22IL5.0ISO	5.00	4.65	12.7	5.0	*	0		
	Z22IR5.5ISO	Z22IL5.5ISO	5.50	4.65	12.7	5.0	*	0		
				1	1	1	1	1		

★Recommended grade (always stock available) ●Available grade (always stock available) OMake-to-order

Threading insert

Threading insert

rrting and Threading Threading insert

									Coating	y y aue
		The right hand tools	The left hand tools	Pitch/mm (pitch/Inch)	S	ØI.C	ød	α°	YBG203	YBG205
Ext		Z16ERA55	Z16ELA55	0.5-1.5(48-16)	3.52	9.525	4.0	55°	*	0
	55°	Z16ERG55	Z16ELG55	1.75-3.0(14-8)	3.52	9.525	4.0	55°	*	0
	55	Z16ERAG55	Z16ELAG55	0.5-3.0(48-8)	3.52	9.525	4.0	55°	*	0
erna		Z22ERN55	Z22ELN55	3.5-5.0(7-5)	4.65	12.7	5.0	55°	*	0
l thr		Z16ERA60	Z16ELA60	0.5-1.5(48-16)	3.52	9.525	4.0	60°	*	0
ead	60º	Z16ERG60	Z16ELG60	1.75-3.0(14-8)	3.52	9.525	4.0	60°	*	0
	00	Z16ERAG60	Z16ELAG60	0.5-3.0(48-8)	3.52	9.525	4.0	60°	*	0
		Z22ERN60	Z22ELN60	3.5-5.0(7-5)	4.65	12.7	5.0	60°	*	0

★Recommended grade (always stock available) ●Available grade (always stock available) ○Make-to-order

		Ту	ре		Basic dim	ensions(m	m)		coating grade		
		The right hand tools	The left hand tools	Pitch/mm (pitch/Inch)	S	ØI.C	ød	α°	YBG203	YBG205	
		Z111RA55	Z11ILA55	0.5-1.5(48-16)	3.05	6.35	3.2	55°	*	0	
		Z16IRA55	Z16ILA55	0.5-1.5(48-16)	3.52	9.525	4.0	55°	*	0	
	55°	Z16IRG55	Z16ILG55	1.75-3.0(14-8)	3.52	9.525	4.0	55°	*	0	
Inte		Z16IRAG55	Z16ILAG55	0.5-3.0(48-8)	3.52	9.525	4.0	55°	*	0	
emal		Z22IRN55	Z221LN55	3.5-5.0(7-5)	4.65	12.7	5.0	55°	*	0	
thre		Z11IRA60	Z11ILA60	0.5-1.5(48-16)	3.05	6.35	3.2	60°	*	0	
ad		Z16IRA60	Z16ILA60	0.5-1.5(48-16)	3.52	9.525	4.0	60°	*	0	
	60°	Z16IRG60	Z16ILG60	1.75-3.0(14-8)	3.52	9.525	4.0	60°	*	0	
		Z16IRAG60	Z16ILAG60	0.5-3.0(48-8)	3.52	9.525	4.0	60°	*	0	
		Z22IRN60	Z22ILN60	3.5-5.0(7-5)	4.65	12.7	5.0	60°	*	0	

	Ту	ре	В	asic dimens	ions(mm)		Recommen gra	ded coating ade
	The right hand tools	The left hand tools	Pitch/mm (pitch/Inch)	S	ØI.C	ød	YBG203	YBG205
	Z16ER8W	Z16EL8W	8	3.52	9.525	4.0	*	0
	Z16ER9W	Z16EL9W	9	3.52	9.525	4.0	*	0
m	Z16ER10W	Z16EL10W	10	3.52	9.525	4.0	*	0
xten	Z16ER11W	Z16EL11W	11	3.52	9.525	4.0	*	0
nal t	Z16ER12W	Z16EL12W	12	3.52	9.525	4.0	*	0
hrea	Z16ER14W	Z16EL14W	14	3.52	9.525	4.0	*	0
Q	Z16ER16W	Z16EL16W	16	3.52	9.525	4.0	*	0
	Z16ER18W	Z16EL18W	18	3.52	9.525	4.0	*	0
	Z16ER19W	Z16EL19W	19	3.52	9.525	4.0	*	0

★Recommended grade (always stock available) ●Available grade (always stock available) OMake-to-order

	Ту	ре	В	Recommended coating grade				
	The right hand tools	The left hand tools	Pitch/mm (pitch/Inch)	S	ØI.C	ød	YBG203	YBG205
	Z16IR8W	Z16IL8W	8	3.52	9.525	4.0	*	0
	Z16IR9W	Z16IL9W	9	3.52	9.525	4.0	*	0
	Z16IR10W	Z16IL10W	10	3.52	9.525	4.0	*	0
nterr	Z16IR11W	Z16IL11W	11	3.52	9.525	4.0	*	0
nal ti	Z16IR12W	Z16IL12W	12	3.52	9.525	4.0	*	0
nrea	Z16IR14W	Z16IL14W	14	3.52	9.525	4.0	*	0
<u>a</u>	Z16IR16W	Z16IL16W	16	3.52	9.525	4.0	*	0
	Z16IR18W	Z16IL18W	18	3.52	9.525	4.0	*	0
	Z16IR19W	Z16IL19W	19	3.52	9.525	4.0	*	0

Threading insert

	Туре		В	Recommended coating grade				
	The right hand tools	The left hand tools	Pitch/mm (pitch/Inch)	S	ØI.C	ød	YBG203	YBG205
	Z16ER8UN	Z16EL8UN	8	3.52	9.525	4.0	*	0
	Z16ER10UN	Z16EL10UN	10	3.52	9.525	4.0	*	0
Ext	Z16ER12UN	Z16EL12UN	12	3.52	9.525	4.0	*	0
erna	Z16ER14UN	Z16EL14UN	14	3.52	9.525	4.0	*	0
l thr	Z16ER16UN	Z16EL16UN	16	3.52	9.525	4.0	*	0
ead	Z16ER18UN	Z16EL18UN	18	3.52	9.525	4.0	*	0
	Z16ER20UN	Z16EL20UN	20	3.52	9.525	4.0	*	0
	Z16ER24UN	Z16EL24UN	24	3.52	9.525	4.0	*	0

★Recommended grade (always stock available) ●Available grade (always stock available) ○Make-to-order

	Ту	ре	В	Recommended coating grade				
	The right hand tools	The left hand tools	Pitch/mm (pitch/Inch)	S	ØI.C	ød	YBG203	YBG205
	Z16IR8UN	Z16IL8UN	8	3.52	9.525	4.0	*	0
	Z16IR10UN	Z16IL10UN	10	3.52	9.525	4.0	*	0
Inte	Z16IR12UN	Z16IL12UN	12	3.52	9.525	4.0	*	0
ema	Z16IR14UN	Z16IL14UN	14	3.52	9.525	4.0	*	0
l thre	Z16IR16UN	Z16IL16UN	16	3.52	9.525	4.0	*	0
ead	Z16IR18UN	Z16IL18UN	18	3.52	9.525	4.0	*	0
	Z16IR20UN	Z16IL20UN	20	3.52	9.525	4.0	*	0
	Z16IR24UN	Z16IL24UN	24	3.52	9.525	4.0	*	0

Threading Tools TURNING Threading insert British standard taper piper thread (with end) ISO 7/1:1994 B.S.21:1985 Standard BSPT 1°47 90 ØI.C ØI.C ød ød Threading R type L type Recommended coating Basic dimensions(mm) Туре grade Threading insert Pitch/mm ØI.C S YBG203 YBG205 The right hand tools The left hand tools ød (pitch/Inch)

3.52

3.52

3.52

3.52

L type

Basic dimensions(mm)

ØI.C

9.525

9.525

9.525

9.525

S

3.52

3.52

3.52

3.52

9.525

9.525

9.525

9.525

4.0

4.0

4.0

4.0

ØI.C

ød

4.0

4.0

4.0

4.0

• Available grade (always stock available)

ød

Recommended coating

grade

YBG203

*

*

*

*

YBG205

Ο

Ο

0

OMake-to-order

Available grade (always stock available)

*

*

*

*

0

0

0

0

OMake-to-order

11

14

19

28

Pitch/mm

(pitch/Inch)

11

14

19

28

★Recommended grade (always stock available)

★Recommended grade (always stock available)

Z16ER11BSPT

Z16ER14BSPT

Z16ER19BSPT

Z16ER28BSPT

R type

The right hand tools

Z16IR11BSPT

Z16IR14BSPT

Z16IR19BSPT

Z16IR28BSPT

External

nternal threa

Z16EL11BSPT

Z16EL14BSPT

Z16EL19BSPT

Z16EL28BSPT

ød

The left hand tools

Z16IL11BSPT

Z16IL14BSPT

Z16IL19BSPT

Z16IL28BSPT

ØI.C

Туре

A 303

Threading insert

	Ту	ре	Basic dimensions(mm) Pitch/mm (pitch/lnch) S Øl.C ød 8 3.52 9.525 4.0 11.5 3.52 9.525 4.0 14 3.52 9.525 4.0 18 3.52 9.525 4.0				Recommen gra	ded coating ade
	The right hand tools	The left hand tools	Pitch/mm (pitch/lnch)	S	ØI.C	ød	YBG203	YBG205
ш	Z16ER8NPT	Z16EL8NPT	8	3.52	9.525	4.0	*	0
xter	Z16ER11.5NPT	Z16EL11.5NPT	11.5	3.52	9.525	4.0	*	0
nal t	Z16ER14NPT	Z16EL14NPT	14	3.52	9.525	4.0	*	0
hrea	Z16ER18NPT	Z16EL18NPT	18	3.52	9.525	4.0	*	0
ā	Z16ER27NPT	Z16EL27NPT	27	3.52	9.525	4.0	*	0

★Recommended grade (always stock available) ●Available grade (always stock available) ○Make-to-order

	Ту	ре	В	asic dimensi	ons(mm)		Recommen gra	ded coating ide
	The right hand tools	The left hand tools	Pitch/mm (pitch/Inch)	S	ØI.C	ød	YBG203	YBG205
_	Z16IR8NPT	Z16IL8NPT	8	3.52	9.525	4.0	*	0
nterr	Z16IR11.5NPT	Z16IL11.5NPT	11.5	3.52	9.525	4.0	*	0
nal tr	Z16IR14NPT	Z16IL14NPT	14	3.52	9.525	4.0	*	0
Irea	Z16IR18NPT	Z16IL18NPT	18	3.52	9.525	4.0	*	0
đ	Z16IR27NPT	Z16IL27NPT	27	3.52	9.525	4.0	*	0

★Recommended grade (always stock available) ●Available grade (always stock available) ○Make-to-order

Threading Threading insert

Threading Tools TURNING

Threading tools

	Pitch							
Full tooth s (pitch rang	Full tooth shape (pitch range is indicated by numbers							
mm		TPI						
0.35-9	0.0	72-2						
V-tooth (pitch range is indicated by letter)								
	mm	TPI						
A	0.5-1.5	48-16						
AG	0.5-3.0	48-8						
G	1.75-3.0	14-8						
Ν	3.5-5.0	7-5						
Q	5.5-6.0	41/2-4						

Threaded tooth shape						
GM	ISO metric 60° thread					
60	60° general pitch thread					
55 ° general pitch thread						
w	Whitworth thread					
UN	Unified thread					
BSPT	British standard pipe thread					
NPT	American standard pipe thread					

Supplementary number

B > Thin Threaded Inserts

Threading

Threading tools

Threading tools

ISO metric thread (with end) Thin type

ISO 965-1980, DIN 13, GB/T 197-2003 Tolerance class: 6g/6H

R type

	Туре		Basic dimensions(mm)					
	The right hand tools	Pitch/mm	S	ØI.C	ød	YBG202		
	RT16.01W-0.50GMB	0.50	3.52	9.525	4.0	*		
	RT16.01W-0.75GMB	0.75	3.52	9.525	4.0	*		
Π	RT16.01W-1.00GMB	1.00	3.52	9.525	4.0	*		
xten	RT16.01W-1.25GMB	1.25	3.52	9.525	4.0	*		
na t	RT16.01W-1.50GMB	1.50	3.52	9.525	4.0	*		
hrea	RT16.01W-1.75GMB	1.75	3.52	9.525	4.0	*		
ā	RT16.01W-2.00GMB	2.00	3.52	9.525	4.0	*		
	RT16.01W-2.50GMB	2.50	3.52	9.525	4.0	*		
	RT16.01W-3.00GMB	3.00	3.52	9.525	4.0	*		

★Recommended grade (always stock available) ●Available grade (always stock available) ○Make-to-order

R type

	Туре		Basic dimer	nsions(mm)		Recommended coating grade
	The right hand tools	Pitch/mm	S	ØI.C	ød	YBG202
	RT16.01N-0.50GMB	0.50	3.52	9.525	4.0	*
Inter	RT16.01N-0.75GMB	0.75	3.52	9.525	4.0	*
	RT16.01N-1.00GMB	1.00	3.52	9.525	4.0	*
	RT16.01N-1.25GMB	1.25	3.52	9.525	4.0	*
าal ti	RT16.01N-1.50GMB	1.50	3.52	9.525	4.0	*
nrea	RT16.01N-1.75GMB	1.75	3.52	9.525	4.0	*
ā	RT16.01N-2.00GMB	2.00	3.52	9.525	4.0	*
	RT16.01N-2.50GMB	2.50	3.52	9.525	4.0	*
	RT16.01N-3.00GMB	3.00	3.52	9.525	4.0	*

Threading Tools TURNING

Threading tools

\wedge		General pitch th	read (witho	out end)	Thin type			
R type								
		Туре		Basic	dimensions(m	m)		Recommended coating grade
		The right hand tools	Pitch/mm (pitch/Inch)	S	ØI.C	ød	α°	YBG202
		RT16.01W-A60B	0.5-1.5(48-16)	3.52	9.525	4.0	60°	*
ШX	60°	RT16.01W-G60B	1.75-3.0(14-8)	3.52	9.525	4.0	60°	*
erna	Í	RT16.01W-AG60B	0.5-3.0(48-8)	3.52	9.525	4.0	60°	*
th		RT16.01W-A55B	0.5-1.5(48-16)	3.52	9.525	4.0	55°	*
ead	55°	RT16.01W-G55B	1.75-3.0(14-8)	3.52	9.525	4.0	55°	*
		RT16.01W-AG55B	0.5-3.0(48-8)	3.52	9.525	4.0	55°	*

★Recommended grade (always stock available) ●Available grade (always stock available) ○Make-to-order

3.52

0.5-3.0(48-8)

RT16.01N-AG55B

★Recommended grade (always stock available) ●Available grade (always stock available) OMake-to-order

4.0

9.525

55°

 \star

Threading tools

9

10

11

12

14

Threading tools

RT16.01W-9WB

RT16.01W-10WB

RT16.01W-11WB

RT16.01W-12WB

RT16.01W-14WB

RT16.01W-16WB

External thread

Whitworth thre	ead (with en	d) Thin type			
ISO 228/1:1982,DII Tolerance class:	N 259,B.S.84:19 Medium class	56 A	R	R=0.137P	
	R type		55° ØI.C	ød	
Туре		Basic dime	nsions(mm)		Recommended coating grade
The right hand tools	Pitch/mm (pitch/Inch)	S	ØI.C	ød	YBG202
RT16.01W-8WB	8	3.52	9.525	4.0	*

3.52

3.52

3.52

3.52

3.52

 16
 3.52
 9.525
 4.0
 ★

 ★Recommended grade (always stock available)
 ●Available grade (always stock available)
 ○Make-to-order

9.525

9.525

9.525

9.525

9.525

4.0

4.0

4.0

4.0

4.0

★

*

 \star

*

 \star

		R type		ØIC	ød	
	Туре		Basic dimer	nsions(mm)		Recommended coating grade
	The right hand tools	Pitch/mm (pitch/Inch)	S	ØI.C	ød	YBG202
	RT16.01N-8WB	8	3.52	9.525	4.0	*
=	RT16.01N-9WB	9	3.52	9.525	4.0	*
nterr	RT16.01N-10WB	10	3.52	9.525	4.0	*
nal th	RT16.01N-11WB	11	3.52	9.525	4.0	*
hrea	RT16.01N-12WB	12	3.52	9.525	4.0	*
<u>a</u>	RT16.01N-14WB	14	3.52	9.525	4.0	*
	RT16.01N-16WB	16	3.52	9.525	4.0	*

N			Threadi	ng Tools	TURN	IING	
					Threading to	ols	
	Unified thread	l (with end)	Thin type		1/8P		
	ASME B1.1- Tolerance class	1989 : 2A/2B			60° 		General turning
				^{60°} ØI.C	ød		Parting and grooving
		R type					hreading
	Туре		Basic dime	nsions(mm)		Recommended coating grade	L
	The right hand tools	Pitch/mm (pitch/Inch)	S	ØI.C	ød	YBG202	tools
	RT16.01W-8UNB	8	3.52	9.525	4.0	*	ding
Ū.	RT16.01W-10UNB	10	3.52	9.525	4.0	*	hrea
xtern	RT16.01W-12UNB	12	3.52	9.525	4.0	*	F
al th	RT16.01W-14UNB	14	3.52	9.525	4.0	*	
reac	RT16.01W-16UNB	16	3.52	9.525	4.0	*	
	RT16.01W-18UNB	18	3.52	9.525	4.0	*	

9.525 ★Recommended grade (always stock available) ●Available grade (always stock available) OMake-to-order

4.0

 \star

		R type			ød	
	Type Basic dimensions(mm)					
	The right hand tools	Pitch/mm (pitch/Inch)	S	ØI.C	ød	YBG202
	RT16.01N-8UNB	8	3.52	9.525	4.0	*
	RT16.01N-10UNB	10	3.52	9.525	4.0	*
Int	RT16.01N-12UNB	12	3.52	9.525	4.0	*
ema	RT16.01N-14UNB	14	3.52	9.525	4.0	*
I thre	RT16.01N-16UNB	16	3.52	9.525	4.0	*
ead	RT16.01N-18UNB	18	3.52	9.525	4.0	*
	RT16.01N-20UNB	20	3.52	9.525	4.0	*
	RT16.01N-24UNB	24	3.52	9.525	4.0	*

3.52

RT16.01W-20UNB

20

Threading tools

		British standard t	aper piper th	read (with	
General		ISO 7/1:1994,B.S Standard B	5.21:1985 SPT		
Parting and Thread			R type		
B		Туре	Basic		
Threa		The right hand tools	Pitch/mm (pitch/Inch)	S	
adin 1	E Xt	RT16.01W-11BSPTB	11	3.52	

	R type				
Туре		Recommended coating grade			
The right hand tools	Pitch/mm (pitch/Inch)	S	ØI.C	ød	YBG202
RT16.01W-11BSPTB	11	3.52	9.525	4.0	*
RT16.01W-14BSPTB	14	3.52	9.525	4.0	*
RT16.01W-19BSPTB	19	3.52	9.525	4.0	*
RT16.01W-28BSPTB	28	3.52	9.525	4.0	*

end)

Thin type

R=0.137P

90° 1°47'

ØI.C

★Recommended grade (always stock available) ●Available grade (always stock available)

ØI.C ød

OMake-to-order

	-	
6		1
		1

R type

	Туре		Recommended coating grade			
	The right hand tools	Pitch/mm (pitch/Inch)	S	ØI.C	ød	YBG202
Inte	RT16.01N-11BSPTB	11	3.52	9.525	4.0	*
erna	RT16.01N-14BSPTB	14	3.52	9.525	4.0	*
I thre	RT16.01N-19BSPTB	19	3.52	9.525	4.0	*
ead	RT16.01N-28BSPTB	28	3.52	9.525	4.0	*

★Recommended grade (always stock available) ●Available grade (always stock available) OMake-to-order

ng tools

Threading Tools TURNING Threading tools American standard taper piper thread (with end) Thin type ASME B1.20.1-1983 **Standard NPT** 90 1°47 ØI.C øc Threading R type Recommended Туре Basic dimensions(mm) coating grade Threading tools Pitch/mm YBG202 The right hand tools S ØI.C ød (pitch/Inch) RT16.01W-8NPTB 8 3.52 9.525 4.0 * External thread

RT16.01W-11.5NPTB 3.52 9.525 11.5 4.0 \star RT16.01W-14NPTB 14 3.52 9.525 4.0 * RT16.01W-18NPTB 18 3.52 9.525 4.0 \star RT16.01W-27NPTB 9.525 27 3.52 4.0 *

★Recommended grade (always stock available) Available grade (always stock available) OMake-to-order

R type

	Туре		Basic dimensions(mm)							
	The right hand tools	Pitch/mm (pitch/Inch)	S	ØI.C	ød	YBG202				
=	RT16.01N-8NPTB	8	3.52	9.525	4.0	*				
nterr	RT16.01N-11.5NPTB	11.5	3.52	9.525	4.0	*				
าal t	RT16.01N-14NPTB	14	3.52	9.525	4.0	*				
nrea	RT16.01N-18NPTB	18	3.52	9.525	4.0	*				
đ	RT16.01N-27NPTB	27	3.52	9.525	4.0	*				

Length	100	125	150	170	180	200	250	300	350

Insert s			
Code	11	16	22
Triangle side length	11	16	22
Inscribed circle	6.35	9.525	12.70

Threading Tools

Threading tools

External threading tools

	R-type shown											
			В	asic di	mensi	ons(mr	n)	Applicable inserts	Inserts screw	Shim	Shim screw	Wrench
Т	Гуре	Stock	а	h	b	L	s		-	۵	1	~
	1616H16		16	16	16	100	20					
	2020K16		20	20	20	125	25		I60 M3.5×12TT	MT16-□□MN	SM4X8C	
	2525M16		25	25	25	150	32	Z16ERDDDD				WT15IP
	3225P16	•	32	32	25	170	32					
ZSER	3232P16		32	32	32	170	40					
	2525M22		25	25	25	150	32		160 M4×15Y			
	3225P22		32	32	25	170	32			MT22-DDMN	SM5X8.5	WT20IP
	3232P22		32	32	32	170	40		100 104 137			
	4040S22	Δ	40	40	40	250	50					
	1616H16		16	16	16	100	20					
	2020K16		20	20	20	125	25					
	2525M16		25	25	25	150	32	Z16ELDDDD	I60 M3.5×12TT	MT16-□□MN	SM4X8C	WT15IP
	3225P16		32	32	25	170	32					
ZSEL	3232P16		32	32	32	170	40					
	2525M22		25	25	25	150	32					
	3225P22		32	32	25	170	32	Z22ELDDDD	I60 M4×15X	MT22-DDMN	SM5X8.5	WT20IP
	3232P22		32	32	32	170	40					WILDI.
	4040S22	Δ	40	40	40	250	50					

▲Stock available △Make-to-order

hreading Parting a

Threading tools

Internal threading tools

Threading tools

<u>) min</u>

R-type shown

	Basic dimensions(mm)		Applicable inserts	Inserts screw	Shim	Shim screw	Wrench							
-	Гуре	Stock	d	L	b	Dmin	s	h	L1		9	6		1
	0016K11	A	16	125	15.5	12	10	15	20.9		I60 M2 5X6 5T			WTOSIP
	0016M11	A	16	150	16	16	10.5	15	25.9	2111(0000	100 102.070.01			****
	0016M16	A	16	150	15.5	20	12	15	27		I60 M3.5X08TT			
	0020M16	A	20	150	19	25	14	18	28.7					
	0020Q16	A	20	180	19	25	14	18	34					
	0025M16	A	25	150	24	32	17	23	28.8					WT15IP
	0032R16	A	32	200	31	40	22	30	30.9		I60 M3.5X12TT	MT16-□□MN	SM4X8C	WITTON
ZSIR	0032S16	A	32	250	31	40	22	30	30.9					
	0040T16	A	40	300	38.5	50	27	37	31.5					
	0050U16	A	50	350	0 48.5 63 35 49 40.2									
	0020Q22	A	20	180	19	25	15	18	35		I60 M5×13.2			
	0025R22	A	25	200	24	32	19	23	39	Z22IRDDD				
	0032S22	A	32	250	31	40	22	30	36.4		I60 M4×15X		SM5X8 5	WT20IP
	0040T22	A	40	300	38.5	50	27	37	37.2				0	
	0050U22	A	50	350	48.5	63	35	47	42.6					
	0016K11	A	16	125	15.5	12	10	15	20.9	Z11ILOOOO	160 M2.5X6.5T			WT07IP
	0016M11	A	16	150	16	16	10.5	15	25.9					
	0016M16	A	16	150	16	20	12	15	27		I60 M3.5X08TT			
	0020M16	A	20	150	19	25	14	18	28.7					
	0020Q16	A	20	180	19	25	14	18	34					
	0025M16	A	25	150	24	32	17	23	28.8	Z16ILOOOO				WT15IP
	0032R16	A	32	200	31	40	22	30	30.9		I60 M3.5X12TT	MT16-DDMN	SM4X8C	
ZSIL	0032S16	A	32	250	31	40	22	30	30.9					
	0040T16	A	40	300	38.5	50	27	37	31.5					
	0050U16	A	50	350	48.5	63	35	49	40.2					
	0020Q22		20	180	19	25	15	18	35		I60 M5×13.2			
	0025R22	A	25	200	24	32	19	23	39					
	0032S22		32	250	31	40	22	30	36.4	Z22IL□□□□	I60 M4×15X	MT22-DDMN	SM5X8.5	WT20IP
	0040T22	A	40	300	38.5	50	27	37	37.2					
	0050U22		50	350	48.5	63	35	47	42.6					

▲Stock available △Make-to-order

General P turning

Select feed way.

Machining method of threading tools

Internal threading machining (Right thread)

Threading

Application information of threading

Application information of threading

Decide helical angle and select shim

The clearance angle of threading inserts is actually along the edge (flank). This has significant effect on heat diffusion, spread of abrasion as well as tool life, security and pitch quality. The clearance angle of threading pitch on clearance face is determined by thread helical angle. These two angles are similar to each other to some extent. If inclined angle of insert is different from the helical angle, then the clearance angle won't be the same either.

The helical angle of pitch has to be the same with the inclined angle of insert to prevent over wearing on the clearance face which could affect tool life. the helical angle is calculated as below:

$\mathbf{e} = \arctan \frac{\mathbf{p}}{\mathbf{d}_{\mathbf{2}} \times \boldsymbol{\pi}}$

P= Pitch

d2= pitch diameter
The most common inclined angle is 1°. MT standard shim and its inclined angle is also 1°.
Calculation of clearance angle:
Clearance angle is calculated as below:

β = arctan (tan θ × tan α)

2θ=Thread profile angle

 α =The rake angle of external standard threading tools is 10°; the rake angle of internal standard threading tools is 15°.

The shim has to be changed when helical angle of thread is \leq clearance angle of tool, which could cause intervene on insert flank.

Please change the shim to adjust the difference between helical angle of thread and inclined angle of shim to be within $2^{\circ} \sim 0^{\circ}$.

For example: when P=1.5, d2=24mm, helical angle1.14°-(2° \sim 0°)=inclined angle(-0.86° \sim 1.14°) it is feasible to use standard shim 1°.

Shim specification table is as follows:

Screw pitch range	Insert dimensions	Inclined angle	Shim
		0	MT16-00MN
0.5-3.0	16	1	MT16-01MN
		2	MT16-02MN
		3	MT16-03MN
3.5-6.0		0	MT22-00MN
	20	1	MT22-01MN
	22	2	MT22-02MN
		3	MT22-03MN

Note: the standard angle of shim for our threading tools is 1°. ((MT16-01MN or MT22-01MN)

Please refer to the table below for actual value:

Thread	β				
profile angle 20	External thread	Internal thread			
60°	5.8°	8.79°			
55°	5.24°	7.94°			
30°	2.7°	4.1°			
29°	2.6°	3.96°			

Threading Tools TURNING

Application information of threading -

Select proper inserts and size of tool holder (Please refer to detailed table of threading tools and inserts)

Parameter table for threading program under different standards

Table of recomme	ended in-fee	d for metri	c ISO exter	nal thread	ing with wi	per edge				
Screw pitch	1.0	1.25	1.5	1.75	2.0	2.5	3.0	4.0	5.0	
Total in-feed	0.72	0.86	1.02	1.17	1.33	1.63	1.94	2.58	3.21	
Number of passes	5	6	7	8	9	11	13	15	17	
Order to follow in	Value of radial in-feed (X) and flank in-feed (Z)									
threading operation	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	
1	0.20/-	0.20/-	0.21/-	0.22/-	0.24/-	0.25/-	0.26/-	0.35/-	0.40/-	
2	0.18/0.10	0.18/0.10	0.18/0.10	0.20/0.12	0.22/0.13	0.24/0.14	0.24/0.14	0.30/0.17	0.35/0.20	
3	0.16/0.09	0.14/0.09	0.18/0.10	0.18/0.10	0.20/0.12	0.21/0.12	0.20/0.12	0.25/0.14	0.30/0.17	
4	0.10/0.06	0.10/0.08	0.15/0.09	0.15/0.09	0.15/0.09	0.18/0.10	0.20/0.12	0.20/0.12	0.28/0.16	
5	0.08/-	0.08/0.06	0.12/0.07	0.13/0.08	0.12/0.07	0.15/0.09	0.18/0.10	0.18/0.10	0.25/0.14	
6			0.10/0.06	0.11/0.06	0.12/0.07	0.12/0.07	0.15/0.09	0.18//0.10	0.20/0.12	
7			0.08/-	0.10/0.06	0.10/0.06	0.12/0.07	0.13/0.08	0.16/0.09	0.18/0.10	
8				0.08/-	0.10/0.06	0.10/0.06	0.12/0.07	0.15/0.09	0.16/0.09	
9					0.08/-	0.10/0.06	0.10/0.06	0.15/0.09	0.15/0.09	
10						0.08/0.05	0.10/0.06	0.13/0.08	0.15/0.09	
11						0.08/-	0.08/0.06	0.12/0.07	0.13/0.08	
12							0.08/0.05	0.12/0.07	0.13/0.08	
13								0.11/0.06	0.12/0.07	
14								0.10/0.06	0.12/0.07	
15								0.08/-	0.11/0.06	
16									0.10/0.06	
17									0.08/-	

Application information of threading

				-	•	•			
Screw pitch	1.00	1.25	1.5	1.75	2.0	2.5	3.0	4.0	5.0
Total in-feed	0.62	0.77	0.92	1.06	1.21	0.15	1.79	2.36	2.95
Number of passes	5	6	7	8	9	11	13	15	17
Order to follow in		1	Value	of radial in-fe	eed (X) and	flank in-feed	(Z)		
threading operation	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z
1	0.18/-	0.20/-	0.22/-	0.23/-	0.24/-	0.25/-	0.26/-	0.30/-	0.32/-
2	0.14/0.08	0.15/0.09	0.16/0.09	0.16/0.09	0.18/0.10	0.20/0.12	0.20/0.12	0.25/0.14	0.28/0.16
3	0.12/0.07	0.12/0.07	0.14/0.08	0.14/0.08	0.15/0.09	0.15/0.09	0.20/0.12	0.22/0.13	0.25/0.14
4	0.10/0.06	0.12/0.07	0.12/0.07	0.13/0.08	0.14/0.08	0.15/0.09	0.18/0.10	0.20/0.12	0.22/0.13
5	0.08/-	0.10/0.06	0.11/0.06	0.12/0.07	0.12/0.07	0.13/0.08	0.15/0.09	0.18/0.10	0.21/0.12
6			0.09/0.05	0.10/0.06	0.11/0.06	0.12/0.07	0.12/0.07	0.15/0.09	0.20/0.12
7			0.08/-	0.10/0.06	0.10/0.06	0.12/0.07	0.12/0.07	0.15/0.09	0.18/0.10
8				0.08/-	0.09/0.05	0.10/0.06	0.10/0.06	0.15/0.09	0.18/0.10
9					0.08/-	0.10/0.06	0.10/0.06	0.12/0.07	0.15/0.09
10						0.09/0.05	0.10/0.06	0.12/0.07	0.15/0.09
11						0.08/-	0.10/0.06	0.12/0.07	0.15/0.09
12							0.08/0.05	0.11/0.06	0.15/0.09
13								0.11/0.06	0.12/0.07
14								0.10/0.06	0.11/0.06
15								0.08/-	0.10/0.06
16									0.10/0.06
17									0.08/-

Table of recommended in-feed for metric ISO internal threading with wiper edge

Threading Tools TURNING

Application information of threading

Screw pitch	24	20	18	16	14	12	11	10	9	8	7	6	5
Total in-feed	0.649	0.779	0.866	0.974	1.113	1.299	1.416	1.558	1.731	1.948	2.226	2.597	3.116
Number of passes	5	6	6	7	9	9	10	11	12	13	14	15	16
Order to follow in				Val	ue of rad	lial in-fee	d (X) and	l flank in-	feed (Z)				
threading operation	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z
1	0.206	0.210	0.233	0.226	0.196	0.229	0.220	0.214	0.210	0.211	0.213	0.218	0.229
2	0.148	0.163	0.181	0.188	0.189	0.222	0.228	0.240	0.256	0.276 0.160	0.304 0.176	0.343	0.399
3	0.114	0.125	0.139	0.145	0.146	0.170	0.176	0.184 0.106	0.196	0.212	0.234	0.263	0.306
4	0.096	0.105	0.117	0.122	0.123	0.143	0.148	0.155	0.165	0.179 0.103	0.197	0.222	0.258
5	0.085	0.093	0.103	0.107	0.108	0.126	0.131	0.137	0.146	0.158	0.173	0.195	0.227
6		0.084	0.093	0.097	0.098	0.114	0.118	0.124	0.132	0.142	0.157	0.177	0.205
7				0.089 0.052	0.090	0.105	0.109	0.114	0.121	0.131	0.144 0.083	0.163	0.189
8					0.084	0.098	0.101	0.106	0.113	0.122	0.134	0.151	0.176
9					0.079	0.092	0.095	0.100	0.106	0.114 0.066	0.126	0.142	0.165
10							0.090	0.094 0.054	0.100	0.108	0.119 0.069	0.134	0.156
11								0.090	0.095	0.103	0.113	0.128	0.149
12									0.091	0.098	0.108	0.122	0.142
13										0.094	0.104	0.117	0.136 0.079
14											0.100	0.113	0.131
15												0.109	0.126
16													0.122

Table of recommended in-feed for American unified standard external threading with wiper edge

General turning

Threading

Application information of threading

Screw pitch	24	20	18	16	14	12	11	10	9	8	7	6	5
Total in-feed	0.573	0.687	0.764	0.860	0.982	1.146	1.250	1.375	1.528	1.719	1.964	2.291	2.750
Number of passes	5	6	6	7	8	9	9	10	11	12	13	14	15
Order to follow in		Value of radial in-feed (X) and flank in-feed (Z)											
threading operation	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z
1	0.193	0.200	0.222	0.219	0.220	0.228	0.250	0.247	0.246	0.252	0.262	0.278	0.302
2	0.127	0.239	0.155	0.161	0.173	0.190	0.207	0.216	0.229	0.247	0.271	0.304	0.353
3	0.098	0.107	0.119	0.124	0.132	0.146	0.159	0.166	0.176	0.189 0.109	0.208	0.234	0.271
4	0.082	0.090	0.100	0.104	0.112	0.123	0.134	0.140	0.148	0.160	0.175	0.197	0.228
5	0.073	0.079 0.046	0.088	0.092	0.098	0.108	0.118 0.068	0.123	0.130	0.141	0.1543	0.173	0.201
6		0.072	0.080	0.083	0.089	0.098	0.107	0.111	0.118	0.127	0.140	0.157	0.182
7				0.077	0.082	0.090	0.098	0.102	0.108	0.117 0.067	0.128	0.144	0.167
8					0.076	0.084	0.091	0.095	0.101	0.109	0.119	0.134	0.156
9						0.079 0.045	0.086	0.090	0.095	0.102	0.112	0.126	0.146
10								0.085	0.090	0.097	0.106	0.119	0.138
11									0.085	0.092	0.101	0.113	0.131
12										0.088	0.096	0.108	0.126
13											0.092	0.101	0.121
14												0.100	0.116
15													0.112

E Table of recommended in-feed for American unified standard internal threading with wiper edge

Threading Tools TURNING

Application information of threading

Screw pitch	28	20	19	16	14	12	11	10	9	8	7	6	5
Total in-feed	0.581	0.813	0.856	1.017	1.162	1.355	1.479	1.626	1.807	2.033	2.324	2.711	3.253
Number of passes	5	6	6	8	8	9	9	10	11	12	14	15	16
Order to follow in				Val	ue of rad	lial in-fee	d (X) and	l flank in-	feed (Z)				
threading operation	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z
1	0.179	0.211	0.223	0.196	0.223	0.226	0.246	0.236	0.230	0.255	0.195	0.197	0.204
2	0.134	0.172	0.181	0.186	0.213	0.234	0.255	0.226 0.139	0.282	0.304 0.158	0.322 0.167	0.361	0.421
3	0.104	0.132	0.139	0.143	0.163	0.180	0.197	0.206	0.216	0.233	0.247	0.278	0.323
4	0.087	0.111 0.058	0.117	0.120	0.138	0.151	0.165	0.172	0.182	0.197	0.208	0.234	0.272
5	0.077	0.098	0.103	0.106	0.121	0.133	0.145	0.152	0.161	0.1738	0.183	0.207	0.240
6		0.089	0.093	0.096	0.110	0.121	0.131	0.137	0.145	0.157	0.166	0.187	0.217
7				0.088	0.101	0.111 0.058	0.121	0.126	0.134	0.144	0.152	0.172	0.200
8				0.082	0.093	0.103	0.113	0.117	0.124 0.065	0.134	0.142	0.160	0.186
9						0.097	0.106	0.110 0.057	0.117	0.126	0.133 0.069	0.150	0.174
10								0.104 0.054	0.111 0.058	0.119	0.126	0.142	0.165
11									0.105	0.113	0.120	0.135	0.157
12										0.108	0.114 0.060	0.129	0.150
13											0.110	0.124	0.144
14												0.119	0.138
15												0.115	0.133
16													0.129

Table of recommended in-feed for British standard internal and external threading with wiper edge

General turning

A 321

Application information of threading

Table of recommended in-feed for NPT internal and external threading with wiper edge Screw pitch 14 27 18 11.5 8 Total in-feed 0.75 1.129 1.451 1.767 2.54 Number of passes 6 8 10 12 14 Value of radial in-feed (X) and flank in-feed (Z) Order to follow in threading operation X/Z X/Z X/Z X/Z X/Z 0.255/-1 0.19/-0.22/-0.240/-0.24/-0.181/0.104 0.200/0.115 0.250/0.144 2 0.15/0.087 0.208/0.120 3 0.13/0.075 0.152/0.088 0.170/0.098 0.182/0.105 0.245/0.141 0.11/0.063 0.141/0.081 0.150/0.086 0.168/0.097 0.230/0.133 4 0.09/0.052 0.131/0.075 0.140/0.081 0.155/0.089 0.210/0.121 5 0.08/0.46 0.121/0.070 0.130/0.075 0.145/0.084 0.195/0.112 6 0.101/0.058 0.120/0.069 0.138/0.079 7 0.180/0.104 0.082/0.047 0.110/0.063 8 0.124/0.072 0.175/0.101 0.100/0.058 9 0.117/0.067 0.170/0.098 10 0.091/0.052 0.105/0.060 0.155/0.089 0.095/0.055 0.140/0.080 11 0.090/0.052 0.125/0.072 12 0.110/0.063 13 0.100/0.058 14

Table of recommended in-feed for BSPT internal and external threading with wiper edge

Screw pitch	28	19	14	11					
Total in-feed	0.581	0.856	1.162	1.479					
Number of passes	5	6	8	10					
Order to follow in	Value of radial in-feed (X) and flank in-feed (Z)								
threading operation	x/z	x/z	x/z	x/z					
1	0.179/-	0.223/-	0.222/-	0.214/-					
2	0.134/0.070	0.181/0.094	0.213/0.111	0.242/0.126					
3	0.103/0.054	0.139/0.072	0.163/0.085	0.186/0.097					
4	0.087/0.045	0.117/0.061	0.138/0.072	0.157/0.082					
5	0.078/0.040	0.103/0.054	0.121/0.063	0.138/0.072					
6		0.093/0.049	0.110/0.057	0.125//0.065					
7			0.101/0.052	0.115/0.060					
8			0.094/0.049	0.107/0.056					
9				0.100/0.052					
10				0.095//0.049					

Application information of threading

Table of	of	recommended	cutting	parameters
Table (וע	recommended	cutting	parameters

						Grade
ISO	n	Naterial		Unit cutting force Kc0.4 N/mm ²	Hardness HB	YBG202 YBG203 YBG205
						Cutting speed(m/min)
		C	=0.15%	1900	125	150-175
	Carbon steel	C	=0.35%	2100	150	140-155
		C	=0.60%	2250	200	130-145
		A	Anneal	2100	180	110-130
		Hardened		2600	275	80-100
	Alloy steel	Ha	ardened	2700	300	70-90
Р		Ha	ardened	2850	350	60-80
		A	Anneal	2600	200	90-115
	High alloy steel	Hardened		3900	325	70-90
		N	on-allov	2000	180	180-210
		low alloy		2500	200	90-115
	Cast steel	Hi	gh alloy	2700	225	90-115
		Martensi	te steel 12%Mn	3600	250	40-50
ПЛ	Staiplage steel	Ai	ustenite	2450	180	110-130
	Stanliess steel	Martensite/Ferrite		2300	200	130-170
	Mallaabla aaat iraa	Ferrite		1100	130	110-140
	Maileable cast Iron	Pearlite		1100	230	85-105
	Crow cost iron	Low tensile-strength		1100	180	110-140
	Gray cast from	High ter	nsile-strength	1500	260	90-115
	Nedular agat iran	I	errite	1100	160	110-130
	Nouulai cast IIOII	F	Pearlite	1800	250	80-100
		Non-ag	ing treatment	500	60	1300-1450
	Aralloy	Aging	g treatment	800	100	450-500
		Non-ag	ing treatment	750	75	430-470
	Cast aluminum alloy	Aging	g treatment	900	90	250-290
		Iron booo	Anneal	3000	200	35-50
		IIOII Dase	Aging	3050	280	25-35
S	Heat resistant alloy	Ni er Cr	Anneal	3500	250	15-25
		INI- OF CO-	Aging	4150	350	10-20
		Dase	Casting	4150	320	10-15
Η	Hardened steel	Hard	ened steel	4500	HRC55	40-50

Note: •The values in the above table are range values. High values in the range could be considered in actual cutting. When trying new cutting speed, please check the cutting edge condition before operation.
In stainless steel threading, high cutting speed should be used to prevent built-up edge.
•The cutting parameters should be reduced when cutting small pitch thread and when using tools with small nose radius.
•When cutting thread by tools with small nose radius, such as NPT standard thread, it is advisable to use tools with big nose radius first to rough, so as to improve the life of tools with small nose radius.

▲`

Application information of threading

Recommend adopting flank in-feed or alternate flank in-feed under allowable range of machining equipment or programmer, it can eliminate the machining vibration effectively, and it has enough space discharge the chips between pitch. Cutting edge suffer a small stress, machining stable, it likes the general turning process when machining thread, good chip control without extra chips.

Threading Tools TURNING

Application information of threading

Common problems in threading and solutions

Problem	Cause	Solutions			
	Cutting speed too high.	Reduce cutting speed.			
Wear on clearance face	Low cutting depth, abrasion.	Reduce frequency of feed and friction of cutting edge.			
	Inserts are over the center line.	Adopt correct center height.			
Asymmetric wear on right and left cutting	The inclined angle of insert is different from the helical angle of thread.	Change to proper shim to get correct inclined angle.			
edge	Flank in-feed is not correct.	Change the way of flank in-feed.			
	Cutting speed too low.	Increase cutting speed.			
	Cutting force too high.	Increase frequency of feed and reduce Max in-feed.			
Breakage	Unstable clamping.	Check if workpiece vibrates. Reduce overhang of tool. Verify clamping of workpiece and tool.			
	Chip twisting.	Increase the pressure of cooling liquid to blow away chips.			
Plastic deformation	High cutting speed, high temperature on cutting area.	Reduce cutting speed. Increase feed frequency and reduce Max cutting depth.			
	Insufficient cooling fluid.	Increase cooling fluid supply.			
Low thread surface quality	Cutting speed too low. The insert is over the center line. Chips are not under control.	Increase cutting speed. Adjust centre height. Change the operation way of tools to well control chips.			
	Incorrect center height.	Adjust centre height.			
Incorrect profile	Pitch on machine is not correct.	Adjust machine.			
Shallow profile	Cutting speed set wrong.	Adjust cutting depth.			
Surface damage	Chips involved or contacted.	Change to flank in-feed to control chip flow direction.			
Built-up edge	Temperature of cutting edge is too low. Usually occur when machining stainless steel and low carbon steel.	Increase cutting speed as well as pressure and concentration of cooling fluid. Choose inserts with good toughness.			
Crack on surface	Cutting force too high	Reduce the cutting depth of each feed.			
	Incorrect clamping of workpiece or tool	Verify clamping of workpiece and tool. Minimize overhang of tool.			
Vibration	Incorrect cutting parameters	Increase cutting speed or reduce it substantially.			
	Incorrect tool clamping	Adjust center height.			

TURNING General Technical Information for Turning Machining

General technical information for turning

The names of each part of turning tools

Primary clearance angle Tool holder Insert of holder Minor angle Rake face Rake angle 0 Width Secondary cutting edge Ο 0 Nose radius Approaching angle Inclined angle Secondary Total length clearance face Toolholder height Shim Nose Primary flank Cutting edge Secondary clearance angle

2 Effects of rake angle

Larger rake angle makes cutting edge sharper, reduces resistant forces of chip flow, diminishes friction and prevent deformation, leading to smaller cutting forces and cutting power, lower cutting temperature, less abrasion and higher surface quality. However, too large rake angle would reduce the rigidity and strength of tool. Heat can't be diffused easily. Serious breakage and abrasion on tool would occur, reducing tool life. Please choose rake angle according to machining conditions.

3 Effects of clearance angle

The main function of clearance angle is to reduce the friction between the clearance face of tool and the surface of workpiece. When the rake angle is fixed, larger clearance angle can increase the sharpness of cutting edge, reduce cutting forces and friction, and then achieve higher surface quality. However, if clearance angle is too large, the strength of cutting edge would decrease. Also, heat can't be diffused easily and serious abrasion would occur, reducing tool life.

The principle of choosing clearance angle: Choose small clearance angle if friction is not serious.

4 Effects of inclined angle

Positive or negative inclined angle determines the direction of chip flow, and also affects the strength and impact resistance of insert nose.

◆As diagram (1) shows, when the inclined angle is negative, namely nose is in the lowest point as apposed to the bottom of tool, chips flow to the machined surface of workpiece.

Value selection	Situations
Small rake angle	 When machining brittle and hard materials When roughing and intermittent cutting
Big rake angle	When machining plastic or soft materialsWhen finishing

Value Selection	Situations
Small clearance angle	 In order to increase nose strength when roughing When machining brittle and hard materials
Large clearance angle	 In order to reduce friction when finishing When machining materials easy to be hardened

1

General Technical Information for Turning Machining TURNING

General technical information for turning

♦ As diagram (2) shows, when inclined angle is positive, namely the nose is in the highest point as apposed to the bottom of the tool, chips flow to the areas of workpiece surface that haven't been machined.

◆ The change of inclined angle also affects insert nose strength and impact resistance. When the inclined angle is negative, the nose is in the lowest point of cutting edge. When the cutting edge enters the workpiece, the contacting point is on the cutting edge or rake face, protecting the nose from impact and increase the strength of the nose. Normally, negative inclined angle should be chosen for tools with big rake angle. This can not only increase nose strength, but also prevent the impact of entry.

5 Effects of approach angle

Reduced approaching angle increases the strength of tools and enable heat to diffuse easily, improving surface quality. This is because when the approach angle is small, cutting edge width is large, and then the unit width of cutting edge bears less cutting force. Meanwhile, tool life can be improved.

Normally, select 90° approach angle for turning of slender and step shaft; select 45° approach angle for external turning, end surface machining and chamfering. When approach angle is larger, radial force is reduced, cutting is stable, cutting thickness is increased, and chip breaking is excellent.

Positive inclined angle (+)	 Picture (2)	
	ricture (2)	
		-

Value selection	Situations
Small approach angle	For those materials with high intensity, high hardness and hardened layer on the surface
Big approach angle	When rigidity of the machine is not enough

6 Effects of minor angle

Minor angle is the main angle that can affect surface quality, and it can also affect tool strength. If the approach angle is too small, the friction between the secondary flank and machined surface of workpiece will increase, causing vibration.

The principle of selecting minor angle: Select small minor angle when roughing or when the friction is unaffected and there is no vibration. Select large minor angle when finishing.

Nose radius

Nose radius significantly affects nose strength and surface quality.

Large nose radius means higher cutting edge strength, and the abrasion on the rake face and clearance face can be reduced to some extent. However, if the nose radius is too large, radial force will increase, and vibration is easy to occur, affecting machining precision and surface quality.

Value selection	Situations
Small nose radius	 Finishing at small cutting depth Machining parts such as slender shaft When the rigidity of the machine is not enough
Large nose radius	 When roughing When machining hard materials (intermittent cutting) When the rigidity of the machine is not enough

TURNING General Technical Information for Turning Machining

General technical information for turning

Calculation method of turning parameters

 $V_{C} = \frac{\pi \times D \times n}{1000} (m/min)$

In the formula: Vc: Cutting speed (m/min) n: Rotating speed of main axle (rev/min) D: Diameter of workpiece (mm)

For example: When the rotating speed is 280rev/min and the diameter of workpiece is 150mm, the cutting speed should be:

$$V_C = \frac{\pi \times D \times n}{1000} (m/min) = 132(m/min)$$

2 Calculation of feed rate

$$f = \frac{l}{n} (mm/rev)$$

In the formula: f: Feed rate per rotation (mm/rev) I: Cutting length per minute (mm/min) n: Rotating speed of main axle (rev/min)

For example: When the rotating speed of main axle is 500rev/min, and the cutting length per minute is 100mm/ min, the feed rate per rotation should be:

$$f = -\frac{l}{n} = \frac{100}{500} = 0.2(mn/rev)$$

(1)

General Technical Information for Turning Machining TURNING

General technical information for turning

Cutting time calculation of external and internal 3 turning

$$T = \frac{l}{f \times n} (min)$$

In the formula: T: Cutting time (min)

I: Length of machined areas (mm) f: Feed rate (mm/rev) n: Rotating speed of main axle (rev/min)

For example: When the rotating speed of main axle is 250rev/min, and the feed rate is 0.2mm/rev, the time needed for a cutting length of 150mm should be:

$$T = \frac{l}{f \times n} = \frac{150}{0.2 \times 250} = 3(min)$$

Time calculation for end surface turning (constant linear speed)

$$T = \frac{\pi \times (a^2 - b^2)}{4000 \times Vc \times f} \quad (min)$$

In the formula: T: Cutting time (min)

Vc: Cutting speed (m/min) f: Feed rate (mm/rev)

For end surface without hole, b=0, the formula is still valid.

Theoretical value calculation of machined 5 surface roughness

$$R = \frac{f^2}{8r_c} \times 1000 \,(\mu m)$$

In the formula: R: Theoretical roughness value of machined surface

f: Feed rate (mm/rev) rc: Nose radius (mm)

For example: When the feed rate is 0.2mm/rev, and the nose radius is 0.4mm, the theoretical roughness value of machined surface should be:

$$R = \frac{f^2}{8r_c} \times 1000 = \frac{0.2^2}{8 \times 0.4} \times 1000 = 12.5 (\mu m)$$

General technical information for turning

Effects of three main parameters

Normally, short machining time, long tool life and high machining precision are expected in machining, so the material quality, hardness, and shape of the workpiece, and properties of machine should be fully considered, and then we can select suitable tools and adopt high-efficiency cutting parameters, namely three parameters.

Cutting speed (Vc)

When the workpiece is rotating on the machine, the number of its rotation per minute is defined as Rotating speed of main axle (n). Because of its rotation, the cutting speed measured on the contacting point of diameter is defined as linear speed, m/min. Normally, linear speed is considered to measure the effect of cutting speed on machining.

Effect of cutting speed

Cutting speed has significant effect on tool life. When the cutting speed is increased, cutting temperature will increase and tool life will be shortened. Cutting speed varies according to the different types and hardness of workpiece. The below conclusions are reached after many cutting experiments: (1) Normally tool life would be reduced to half when the cutting speed is increased by 20%. Tool life would be 20% of the original life if the cutting speed is raised by 50%.

(2) Low speed (20-40m/min) cutting could easily cause vibration and shorten tool life.

Feed rate (fn)

Feed rate is defined as the moving distance of tool after workpiece rotates for one circle, measured by mm/ rotation.

Effect of feed rate

Feed rate is a key factor that determines surface quality. Meanwhile it also affect the range of chip forming and the thickness of chips during machining.

In term of the effect on tool life, small feed rate leads to serious abrasion on clearance face, greatly reducing tool life.

Cutting depth (ap)

Cutting depth is defined as the difference between machined surface and unmachined surface, measured by mm. It is half the difference value between the original diameter and machined diameter.

Effect of cutting depth

Cutting depth should be determined by the machining allowance and shape of workpiece, power and rigidity of machine, and tool rigidity.

The change of cutting depth has little effect on tool life. If the cutting depth is too low, the cutting nose only scrapes the hardened layer on the workpiece surface, reducing tool life. When there is hardened oxide layer on workpiece surface, higher cutting depth should be adopted within the possible range of machine's power to avoid cutting nose just cutting the hardened layer of workpiece.

A 330

CCCT SANDVIK KORLOY Taegutec WALTER DF LC HU FA FP5 LC HF FG MP3, FV5 SF HF FG MP3, NF4 SF WL HF FC WGF WL HW WS NF4 WGF WL HM FG MF3 WGF WL HM WS NF4 WGM WM HM MF3 MF3 VMGF WL HM MS MF3 VMM MM MS MF3 MF3 VMM MM MF3 MF3 MF3 MMM MM MT MF3 MF3 MMM MM MT MM MM5 MMM MM MT MM MM MMM MM MT MM0 RP7 MMM MM MT MM0 RP7	SECO MITSUBISHI SUMITOMO KENNAMETAL DIJET HITACHI TUNGALOY KYOCERA VALANTTE	FF1 PK% FH, FY FB FF DP%, GP, F1 FF2 FP, FS FA, FL F 11 XP-T, XF F1	MF2 LP,C FE, SU, LU, LF, FN PF, UR BE, CE NS, 27 HQ, CQ F2(2B), SA,SH SX,SE LF, FN UA, UT B, BH TSF, AS, TQ PQ F5(5C) SY T T T T T XQ, XS	W-MF2 SW LUW FW FW ASW WF FW, SW WP, WO	MF3 CT NM, ZM F3, F4(8A), MF5 MP GU AB TM, DM PG, CJ, M2(2C), M3 M5 MA UG P PG AB TM, DM PG, CJ, M2(2C), M3 M3 MH UX MN UB AT 37, AM HS, PT M6, M7, 55, M3 M5 MH GE AH 33, 38 HS, PT M6, M7, 55, M8	W-M6 W-M3 MW GUW MW W-M5 W	MR7 RP MU, MX RN UD, GG Y, RE TH RH, GT MR6 GH ME, UZ RP	R5, R56 R4, R6 HM, HL MP, HG R3, R4, MR, RM R3, R4, TE, UE R3, R4, TU, TRS R3, R4, PX R7, PR9 HZ, HX HP, HU OL HX, HE PX PX
CCCT SANDVIK KORLOY Taegutec Mile DF CF HU FA Mile DF CF HU FA Mile SF HF FF Mile Mile VGF WL HH FG Mile VGF WL HH FG Mile VMGF WL HM WS Mile VMGM WMMX MM Mile Mile MOMM WMM MM Mile Mile MARMARIA MM MILe Mile Mile MARMARIA MM MILe Mile Mile	ALTER SEC	FP5 FF	3, FV5 MF	NF W-M	MF3 MF MV5 M3	N-W M-W M-W	16, RP5 MR 19, RP7 MR	R5, F NR6 R4, NRF R7, F
CCCT SANDVIK KORL DF LC HH SF XF HF NGF WL HM VGM WK HM VGM WMX HM VGM WMX HM XMA WM XMA	OY TaeguTec W	FA	FG MF	SW	MP MT FT C	ΥT	RT NM	RX, HD YH HT Y
ZCCCT SF DF DM DM DM DM VCF R[Single side]	SANDVIK KORL	AF LC HU	분 분 분 분	WL WF	PM QM XM HM	XMW WM	PR, HM XMR	OR R HR
	ZCCCT		PF SF	WGF	N N	WGM	LR(Single-side) DR(Double-side)	HDR .
Machining For extra finishing For finishing For finishing (Soft steel) For finishing (Wiper) For semi- finishing For semi- finishing For semi- finishing For semi- finishing	Machining range	For extra finishing	For finishing For finishing (Soft steel)	For finishing (Wiper)	For semi- finishing	For semi- finishing(Wiper)	For light roughing	For heavy

General Technical Information for Turning Machining

Negative inserts

Comparison table for turning insert chipbreaker

Comparison table for turning inserts chipbreaker

> R6(9A) R7(9B), R9(9C)

표 표 표 H, HZ, HZ,

HR MR

R8

※ Periphery grinding type

Comparison table for turning inserts chipbreaker

A 331

reading Comparison table for turning inserts chipbreaker

Comparison table for turning insert chipbreaker **Negative inserts**

VALANTTE	F1, F2(2B), F5(5C)	F3, F4(8A), M2(2C), M3 M4, M5(5B), M6, M7, 55, M8	R3, R4, R6(9A) R7(9B), R9(9C)	F2(2B)	M5(5B), M6, M8	R3, R4, R7(9B)	F5(5C), M2(2C)	M4, M5(5B), M7, 55	
KYOCERA	MQ GU	MS, MU SU, HU, ST, TK		ð	KG, C	KH, GC	MQ	SQ, MS MU, TK	SG SX
TUNGALOY	SS	SF, SA, SM, S	TH, SH	CF	CM		HRF	HRM, SA HMM	
HITACHI	MP, AB BH	DE PV SE AH	AE	VA, AH	V, AE	RE		~	
DIJET		SF, SG SZ			PG	GG			
KENNAMETAL	FP, LF%	ЧM	d da	R	RP, UN		FS, LF	NGP.% UP, P	КР
SUMITOMO	SU, EF	EX, EG UP, GU HM	EM, MU MP		UZ, GZ UX		EF, SU%	EG, EX SU※, UP	MU
MITSUBISHI	SH, LM	MS, ES GM, MM MA	GH, HZ RM, HL	AH AH	AE <	RE	FJ %, LS MJ, MJ %	WS	GJ
SECO	MF1	MF4	M5, MR7 RR6	MF2, M3 MF5, M4	M5		MF5, MF1 MF4	M1	MR3 MR4
WALTER	NF4, FM5	MM5 RM5 NM4	NR4 NR5	MK5	RK5 NM5	RK7	NF4, NFT MS3	NMT, NMS	NRS NRT
TaeguTec	SF	ML, EM MM, VF	ΤW		MC	КТ	EA		ET
коггоу	АН	R	GS, HM		Through chip- breaker, HM	GR, HR GH			
SANDVIK	MF	MM, QM XM, K	R	KF	KM	KR KRR	SF SGF %	NGP ^{%,} SM	SR SMR
ZCCCT	EF	E	Щ	MA	MA	Without chip- breaker	NF/NGF	ΣN	SNR
Machining range	For finishing	For semi- finishing	For roughing	For finishing	For Semi- Finishing	For roughing	For finishing	For semi- finishing	For roughing
ISO		Σ			×			5	

TURNING General Technical Information for Turning Machining Comparison table for turning inserts chipbreaker

% Periphery grinding type

A 332

mpa	Irisol	n table fc	or turning	j insert (chipbrea	Iker	Positive	inserts							
Machining Z range	N	СССТ	SANDVIK	KORLOY	TaeguTec	WALTER	SECO	MITSUBISHI	SUMITOMO	KENNAMETAL	DUET	HITACHI	TUNGALOY	KYOCERA	VALANTTE
-or finishing		SF, HF	PF, UF XF	HFP	FA, FG FX	PF4 FP4	FF1 F1	FV, SV FP, LP	FP, LU SU, SK	11, UF LF, FP		ð	PF, PSF PS, PSS	GP, XP VF, PP	PF4 JQ, JZ
-or finishing (Wiper)			WF			PF2※ PF, PF5※	W-F1	SW	RDW SDW	ΡM				ΔN	
For semi- finishing		ΣH	UM, XM PM, PR XR	HMP C25	MT, PC	PS5 PM5 FP6	F2 MF2, M5	MV, MP	ΩW	MF, MP	Ŀ	Щ	PM 23, 24	HQ, XQ GK MF%	PM2 PM4
For semi- finishing (Wiper)			MW		ΤM	MA	W-F2 W-M3	MM		MM					
or finishing		Ц	MF	НЕР		FM4	F1, F2	FM, LM	FC%, SI% LU, SU	ЧH		MP	PF, PSF PS, PSS	CF %, CK % GQ %, GF % MQ, SK	1A, 2A
For semi- finishing		Ĕ	MM	HMP C25		MM4 RM4		MM	ŊΜ	МР			Md	HQ GK	PM2 PM4
For semi- finishing ch		HM, IR without iip-breaker	KF KM KR	HMP C25		FK6	F1 M3, M5	MK Without chip- breaker	MU Without chip- breaker	Without chip- breaker			CM Without chip- breaker	Without chip- breaker ※	PM2 PM4
or finishing/ For semi- finishing		NGF						FS%, LS% FJ%, FS-P% LS-P%	SL%	LF % HP %				MQ	PM2, 1A 2A
For general turning		ЕН	AL	TA AK MA	F	PM2, FN2 MN2	AL%	AZ%	AG	ж НРЖ	ALU ACB ASF		AL %	AH%	1L, 1A 2A

General Technical Information for Turning Machining TURNING

※ Periphery grinding type

Comparison table for turning inserts chipbreaker